langsmith_trace.py 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358
  1. import json
  2. import logging
  3. import os
  4. from datetime import datetime, timedelta
  5. from langsmith import Client
  6. from core.ops.base_trace_instance import BaseTraceInstance
  7. from core.ops.entities.config_entity import LangSmithConfig
  8. from core.ops.entities.trace_entity import (
  9. BaseTraceInfo,
  10. DatasetRetrievalTraceInfo,
  11. GenerateNameTraceInfo,
  12. MessageTraceInfo,
  13. ModerationTraceInfo,
  14. SuggestedQuestionTraceInfo,
  15. ToolTraceInfo,
  16. WorkflowTraceInfo,
  17. )
  18. from core.ops.langsmith_trace.entities.langsmith_trace_entity import (
  19. LangSmithRunModel,
  20. LangSmithRunType,
  21. LangSmithRunUpdateModel,
  22. )
  23. from core.ops.utils import filter_none_values
  24. from extensions.ext_database import db
  25. from models.model import EndUser, MessageFile
  26. from models.workflow import WorkflowNodeExecution
  27. logger = logging.getLogger(__name__)
  28. class LangSmithDataTrace(BaseTraceInstance):
  29. def __init__(
  30. self,
  31. langsmith_config: LangSmithConfig,
  32. ):
  33. super().__init__(langsmith_config)
  34. self.langsmith_key = langsmith_config.api_key
  35. self.project_name = langsmith_config.project
  36. self.project_id = None
  37. self.langsmith_client = Client(
  38. api_key=langsmith_config.api_key, api_url=langsmith_config.endpoint
  39. )
  40. self.file_base_url = os.getenv("FILES_URL", "http://127.0.0.1:5001")
  41. def trace(self, trace_info: BaseTraceInfo):
  42. if isinstance(trace_info, WorkflowTraceInfo):
  43. self.workflow_trace(trace_info)
  44. if isinstance(trace_info, MessageTraceInfo):
  45. self.message_trace(trace_info)
  46. if isinstance(trace_info, ModerationTraceInfo):
  47. self.moderation_trace(trace_info)
  48. if isinstance(trace_info, SuggestedQuestionTraceInfo):
  49. self.suggested_question_trace(trace_info)
  50. if isinstance(trace_info, DatasetRetrievalTraceInfo):
  51. self.dataset_retrieval_trace(trace_info)
  52. if isinstance(trace_info, ToolTraceInfo):
  53. self.tool_trace(trace_info)
  54. if isinstance(trace_info, GenerateNameTraceInfo):
  55. self.generate_name_trace(trace_info)
  56. def workflow_trace(self, trace_info: WorkflowTraceInfo):
  57. if trace_info.message_id:
  58. message_run = LangSmithRunModel(
  59. id=trace_info.message_id,
  60. name=f"message_{trace_info.message_id}",
  61. inputs=trace_info.workflow_run_inputs,
  62. outputs=trace_info.workflow_run_outputs,
  63. run_type=LangSmithRunType.chain,
  64. start_time=trace_info.start_time,
  65. end_time=trace_info.end_time,
  66. extra={
  67. "metadata": trace_info.metadata,
  68. },
  69. tags=["message"],
  70. error=trace_info.error
  71. )
  72. self.add_run(message_run)
  73. langsmith_run = LangSmithRunModel(
  74. file_list=trace_info.file_list,
  75. total_tokens=trace_info.total_tokens,
  76. id=trace_info.workflow_app_log_id if trace_info.workflow_app_log_id else trace_info.workflow_run_id,
  77. name=f"workflow_{trace_info.workflow_app_log_id}" if trace_info.workflow_app_log_id else f"workflow_{trace_info.workflow_run_id}",
  78. inputs=trace_info.workflow_run_inputs,
  79. run_type=LangSmithRunType.tool,
  80. start_time=trace_info.workflow_data.created_at,
  81. end_time=trace_info.workflow_data.finished_at,
  82. outputs=trace_info.workflow_run_outputs,
  83. extra={
  84. "metadata": trace_info.metadata,
  85. },
  86. error=trace_info.error,
  87. tags=["workflow"],
  88. parent_run_id=trace_info.message_id if trace_info.message_id else None,
  89. )
  90. self.add_run(langsmith_run)
  91. # through workflow_run_id get all_nodes_execution
  92. workflow_nodes_executions = (
  93. db.session.query(WorkflowNodeExecution)
  94. .filter(WorkflowNodeExecution.workflow_run_id == trace_info.workflow_run_id)
  95. .order_by(WorkflowNodeExecution.index.desc())
  96. .all()
  97. )
  98. for node_execution in workflow_nodes_executions:
  99. node_execution_id = node_execution.id
  100. tenant_id = node_execution.tenant_id
  101. app_id = node_execution.app_id
  102. node_name = node_execution.title
  103. node_type = node_execution.node_type
  104. status = node_execution.status
  105. if node_type == "llm":
  106. inputs = json.loads(node_execution.process_data).get(
  107. "prompts", {}
  108. ) if node_execution.process_data else {}
  109. else:
  110. inputs = json.loads(node_execution.inputs) if node_execution.inputs else {}
  111. outputs = (
  112. json.loads(node_execution.outputs) if node_execution.outputs else {}
  113. )
  114. created_at = node_execution.created_at if node_execution.created_at else datetime.now()
  115. elapsed_time = node_execution.elapsed_time
  116. finished_at = created_at + timedelta(seconds=elapsed_time)
  117. execution_metadata = (
  118. json.loads(node_execution.execution_metadata)
  119. if node_execution.execution_metadata
  120. else {}
  121. )
  122. node_total_tokens = execution_metadata.get("total_tokens", 0)
  123. metadata = json.loads(node_execution.execution_metadata) if node_execution.execution_metadata else {}
  124. metadata.update(
  125. {
  126. "workflow_run_id": trace_info.workflow_run_id,
  127. "node_execution_id": node_execution_id,
  128. "tenant_id": tenant_id,
  129. "app_id": app_id,
  130. "app_name": node_name,
  131. "node_type": node_type,
  132. "status": status,
  133. }
  134. )
  135. process_data = json.loads(node_execution.process_data) if node_execution.process_data else {}
  136. if process_data and process_data.get("model_mode") == "chat":
  137. run_type = LangSmithRunType.llm
  138. elif node_type == "knowledge-retrieval":
  139. run_type = LangSmithRunType.retriever
  140. else:
  141. run_type = LangSmithRunType.tool
  142. langsmith_run = LangSmithRunModel(
  143. total_tokens=node_total_tokens,
  144. name=f"{node_name}_{node_execution_id}",
  145. inputs=inputs,
  146. run_type=run_type,
  147. start_time=created_at,
  148. end_time=finished_at,
  149. outputs=outputs,
  150. file_list=trace_info.file_list,
  151. extra={
  152. "metadata": metadata,
  153. },
  154. parent_run_id=trace_info.workflow_app_log_id if trace_info.workflow_app_log_id else trace_info.workflow_run_id,
  155. tags=["node_execution"],
  156. )
  157. self.add_run(langsmith_run)
  158. def message_trace(self, trace_info: MessageTraceInfo):
  159. # get message file data
  160. file_list = trace_info.file_list
  161. message_file_data: MessageFile = trace_info.message_file_data
  162. file_url = f"{self.file_base_url}/{message_file_data.url}" if message_file_data else ""
  163. file_list.append(file_url)
  164. metadata = trace_info.metadata
  165. message_data = trace_info.message_data
  166. message_id = message_data.id
  167. user_id = message_data.from_account_id
  168. if message_data.from_end_user_id:
  169. end_user_data: EndUser = db.session.query(EndUser).filter(
  170. EndUser.id == message_data.from_end_user_id
  171. ).first().session_id
  172. end_user_id = end_user_data.session_id
  173. metadata["end_user_id"] = end_user_id
  174. metadata["user_id"] = user_id
  175. message_run = LangSmithRunModel(
  176. input_tokens=trace_info.message_tokens,
  177. output_tokens=trace_info.answer_tokens,
  178. total_tokens=trace_info.total_tokens,
  179. id=message_id,
  180. name=f"message_{message_id}",
  181. inputs=trace_info.inputs,
  182. run_type=LangSmithRunType.chain,
  183. start_time=trace_info.start_time,
  184. end_time=trace_info.end_time,
  185. outputs=message_data.answer,
  186. extra={
  187. "metadata": metadata,
  188. },
  189. tags=["message", str(trace_info.conversation_mode)],
  190. error=trace_info.error,
  191. file_list=file_list,
  192. )
  193. self.add_run(message_run)
  194. # create llm run parented to message run
  195. llm_run = LangSmithRunModel(
  196. input_tokens=trace_info.message_tokens,
  197. output_tokens=trace_info.answer_tokens,
  198. total_tokens=trace_info.total_tokens,
  199. name=f"llm_{message_id}",
  200. inputs=trace_info.inputs,
  201. run_type=LangSmithRunType.llm,
  202. start_time=trace_info.start_time,
  203. end_time=trace_info.end_time,
  204. outputs=message_data.answer,
  205. extra={
  206. "metadata": metadata,
  207. },
  208. parent_run_id=message_id,
  209. tags=["llm", str(trace_info.conversation_mode)],
  210. error=trace_info.error,
  211. file_list=file_list,
  212. )
  213. self.add_run(llm_run)
  214. def moderation_trace(self, trace_info: ModerationTraceInfo):
  215. langsmith_run = LangSmithRunModel(
  216. name="moderation",
  217. inputs=trace_info.inputs,
  218. outputs={
  219. "action": trace_info.action,
  220. "flagged": trace_info.flagged,
  221. "preset_response": trace_info.preset_response,
  222. "inputs": trace_info.inputs,
  223. },
  224. run_type=LangSmithRunType.tool,
  225. extra={
  226. "metadata": trace_info.metadata,
  227. },
  228. tags=["moderation"],
  229. parent_run_id=trace_info.message_id,
  230. start_time=trace_info.start_time or trace_info.message_data.created_at,
  231. end_time=trace_info.end_time or trace_info.message_data.updated_at,
  232. )
  233. self.add_run(langsmith_run)
  234. def suggested_question_trace(self, trace_info: SuggestedQuestionTraceInfo):
  235. message_data = trace_info.message_data
  236. suggested_question_run = LangSmithRunModel(
  237. name="suggested_question",
  238. inputs=trace_info.inputs,
  239. outputs=trace_info.suggested_question,
  240. run_type=LangSmithRunType.tool,
  241. extra={
  242. "metadata": trace_info.metadata,
  243. },
  244. tags=["suggested_question"],
  245. parent_run_id=trace_info.message_id,
  246. start_time=trace_info.start_time or message_data.created_at,
  247. end_time=trace_info.end_time or message_data.updated_at,
  248. )
  249. self.add_run(suggested_question_run)
  250. def dataset_retrieval_trace(self, trace_info: DatasetRetrievalTraceInfo):
  251. dataset_retrieval_run = LangSmithRunModel(
  252. name="dataset_retrieval",
  253. inputs=trace_info.inputs,
  254. outputs={"documents": trace_info.documents},
  255. run_type=LangSmithRunType.retriever,
  256. extra={
  257. "metadata": trace_info.metadata,
  258. },
  259. tags=["dataset_retrieval"],
  260. parent_run_id=trace_info.message_id,
  261. start_time=trace_info.start_time or trace_info.message_data.created_at,
  262. end_time=trace_info.end_time or trace_info.message_data.updated_at,
  263. )
  264. self.add_run(dataset_retrieval_run)
  265. def tool_trace(self, trace_info: ToolTraceInfo):
  266. tool_run = LangSmithRunModel(
  267. name=trace_info.tool_name,
  268. inputs=trace_info.tool_inputs,
  269. outputs=trace_info.tool_outputs,
  270. run_type=LangSmithRunType.tool,
  271. extra={
  272. "metadata": trace_info.metadata,
  273. },
  274. tags=["tool", trace_info.tool_name],
  275. parent_run_id=trace_info.message_id,
  276. start_time=trace_info.start_time,
  277. end_time=trace_info.end_time,
  278. file_list=[trace_info.file_url],
  279. )
  280. self.add_run(tool_run)
  281. def generate_name_trace(self, trace_info: GenerateNameTraceInfo):
  282. name_run = LangSmithRunModel(
  283. name="generate_name",
  284. inputs=trace_info.inputs,
  285. outputs=trace_info.outputs,
  286. run_type=LangSmithRunType.tool,
  287. extra={
  288. "metadata": trace_info.metadata,
  289. },
  290. tags=["generate_name"],
  291. start_time=trace_info.start_time or datetime.now(),
  292. end_time=trace_info.end_time or datetime.now(),
  293. )
  294. self.add_run(name_run)
  295. def add_run(self, run_data: LangSmithRunModel):
  296. data = run_data.model_dump()
  297. if self.project_id:
  298. data["session_id"] = self.project_id
  299. elif self.project_name:
  300. data["session_name"] = self.project_name
  301. data = filter_none_values(data)
  302. try:
  303. self.langsmith_client.create_run(**data)
  304. logger.debug("LangSmith Run created successfully.")
  305. except Exception as e:
  306. raise ValueError(f"LangSmith Failed to create run: {str(e)}")
  307. def update_run(self, update_run_data: LangSmithRunUpdateModel):
  308. data = update_run_data.model_dump()
  309. data = filter_none_values(data)
  310. try:
  311. self.langsmith_client.update_run(**data)
  312. logger.debug("LangSmith Run updated successfully.")
  313. except Exception as e:
  314. raise ValueError(f"LangSmith Failed to update run: {str(e)}")
  315. def api_check(self):
  316. try:
  317. random_project_name = f"test_project_{datetime.now().strftime('%Y%m%d%H%M%S')}"
  318. self.langsmith_client.create_project(project_name=random_project_name)
  319. self.langsmith_client.delete_project(project_name=random_project_name)
  320. return True
  321. except Exception as e:
  322. logger.debug(f"LangSmith API check failed: {str(e)}")
  323. raise ValueError(f"LangSmith API check failed: {str(e)}")