| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169 | 
							- import json
 
- from typing import Type
 
- from flask import current_app
 
- from langchain.tools import BaseTool
 
- from pydantic import Field, BaseModel
 
- from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
 
- from core.conversation_message_task import ConversationMessageTask
 
- from core.embedding.cached_embedding import CacheEmbedding
 
- from core.index.keyword_table_index.keyword_table_index import KeywordTableIndex, KeywordTableConfig
 
- from core.index.vector_index.vector_index import VectorIndex
 
- from core.model_providers.error import LLMBadRequestError, ProviderTokenNotInitError
 
- from core.model_providers.model_factory import ModelFactory
 
- from extensions.ext_database import db
 
- from models.dataset import Dataset, DocumentSegment, Document
 
- class DatasetRetrieverToolInput(BaseModel):
 
-     query: str = Field(..., description="Query for the dataset to be used to retrieve the dataset.")
 
- class DatasetRetrieverTool(BaseTool):
 
-     """Tool for querying a Dataset."""
 
-     name: str = "dataset"
 
-     args_schema: Type[BaseModel] = DatasetRetrieverToolInput
 
-     description: str = "use this to retrieve a dataset. "
 
-     tenant_id: str
 
-     dataset_id: str
 
-     k: int = 3
 
-     conversation_message_task: ConversationMessageTask
 
-     return_resource: str
 
-     retriever_from: str
 
-     @classmethod
 
-     def from_dataset(cls, dataset: Dataset, **kwargs):
 
-         description = dataset.description
 
-         if not description:
 
-             description = 'useful for when you want to answer queries about the ' + dataset.name
 
-         description = description.replace('\n', '').replace('\r', '')
 
-         return cls(
 
-             name=f'dataset-{dataset.id}',
 
-             tenant_id=dataset.tenant_id,
 
-             dataset_id=dataset.id,
 
-             description=description,
 
-             **kwargs
 
-         )
 
-     def _run(self, query: str) -> str:
 
-         dataset = db.session.query(Dataset).filter(
 
-             Dataset.tenant_id == self.tenant_id,
 
-             Dataset.id == self.dataset_id
 
-         ).first()
 
-         if not dataset:
 
-             return f'[{self.name} failed to find dataset with id {self.dataset_id}.]'
 
-         if dataset.indexing_technique == "economy":
 
-             # use keyword table query
 
-             kw_table_index = KeywordTableIndex(
 
-                 dataset=dataset,
 
-                 config=KeywordTableConfig(
 
-                     max_keywords_per_chunk=5
 
-                 )
 
-             )
 
-             documents = kw_table_index.search(query, search_kwargs={'k': self.k})
 
-             return str("\n".join([document.page_content for document in documents]))
 
-         else:
 
-             try:
 
-                 embedding_model = ModelFactory.get_embedding_model(
 
-                     tenant_id=dataset.tenant_id,
 
-                     model_provider_name=dataset.embedding_model_provider,
 
-                     model_name=dataset.embedding_model
 
-                 )
 
-             except LLMBadRequestError:
 
-                 return ''
 
-             except ProviderTokenNotInitError:
 
-                 return ''
 
-             embeddings = CacheEmbedding(embedding_model)
 
-             vector_index = VectorIndex(
 
-                 dataset=dataset,
 
-                 config=current_app.config,
 
-                 embeddings=embeddings
 
-             )
 
-             if self.k > 0:
 
-                 documents = vector_index.search(
 
-                     query,
 
-                     search_type='similarity_score_threshold',
 
-                     search_kwargs={
 
-                         'k': self.k,
 
-                         'filter': {
 
-                             'group_id': [dataset.id]
 
-                         }
 
-                     }
 
-                 )
 
-             else:
 
-                 documents = []
 
-             hit_callback = DatasetIndexToolCallbackHandler(dataset.id, self.conversation_message_task)
 
-             hit_callback.on_tool_end(documents)
 
-             document_score_list = {}
 
-             if dataset.indexing_technique != "economy":
 
-                 for item in documents:
 
-                     document_score_list[item.metadata['doc_id']] = item.metadata['score']
 
-             document_context_list = []
 
-             index_node_ids = [document.metadata['doc_id'] for document in documents]
 
-             segments = DocumentSegment.query.filter(DocumentSegment.dataset_id == self.dataset_id,
 
-                                                     DocumentSegment.completed_at.isnot(None),
 
-                                                     DocumentSegment.status == 'completed',
 
-                                                     DocumentSegment.enabled == True,
 
-                                                     DocumentSegment.index_node_id.in_(index_node_ids)
 
-                                                     ).all()
 
-             if segments:
 
-                 index_node_id_to_position = {id: position for position, id in enumerate(index_node_ids)}
 
-                 sorted_segments = sorted(segments,
 
-                                          key=lambda segment: index_node_id_to_position.get(segment.index_node_id,
 
-                                                                                            float('inf')))
 
-                 for segment in sorted_segments:
 
-                     if segment.answer:
 
-                         document_context_list.append(f'question:{segment.content} answer:{segment.answer}')
 
-                     else:
 
-                         document_context_list.append(segment.content)
 
-                 if self.return_resource:
 
-                     context_list = []
 
-                     resource_number = 1
 
-                     for segment in sorted_segments:
 
-                         context = {}
 
-                         document = Document.query.filter(Document.id == segment.document_id,
 
-                                                          Document.enabled == True,
 
-                                                          Document.archived == False,
 
-                                                          ).first()
 
-                         if dataset and document:
 
-                             source = {
 
-                                 'position': resource_number,
 
-                                 'dataset_id': dataset.id,
 
-                                 'dataset_name': dataset.name,
 
-                                 'document_id': document.id,
 
-                                 'document_name': document.name,
 
-                                 'data_source_type': document.data_source_type,
 
-                                 'segment_id': segment.id,
 
-                                 'retriever_from': self.retriever_from
 
-                             }
 
-                             if dataset.indexing_technique != "economy":
 
-                                 source['score'] = document_score_list.get(segment.index_node_id)
 
-                             if self.retriever_from == 'dev':
 
-                                 source['hit_count'] = segment.hit_count
 
-                                 source['word_count'] = segment.word_count
 
-                                 source['segment_position'] = segment.position
 
-                                 source['index_node_hash'] = segment.index_node_hash
 
-                             if segment.answer:
 
-                                 source['content'] = f'question:{segment.content} \nanswer:{segment.answer}'
 
-                             else:
 
-                                 source['content'] = segment.content
 
-                             context_list.append(source)
 
-                         resource_number += 1
 
-                     hit_callback.return_retriever_resource_info(context_list)
 
-             return str("\n".join(document_context_list))
 
-     async def _arun(self, tool_input: str) -> str:
 
-         raise NotImplementedError()
 
 
  |