123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344 |
- import json
- import os
- import re
- import enum
- from typing import List, Optional, Tuple
- from langchain.memory.chat_memory import BaseChatMemory
- from langchain.schema import BaseMessage
- from core.model_providers.models.entity.model_params import ModelMode
- from core.model_providers.models.entity.message import PromptMessage, MessageType, to_prompt_messages
- from core.model_providers.models.llm.base import BaseLLM
- from core.model_providers.models.llm.baichuan_model import BaichuanModel
- from core.model_providers.models.llm.huggingface_hub_model import HuggingfaceHubModel
- from core.model_providers.models.llm.openllm_model import OpenLLMModel
- from core.model_providers.models.llm.xinference_model import XinferenceModel
- from core.prompt.prompt_builder import PromptBuilder
- from core.prompt.prompt_template import PromptTemplateParser
- class AppMode(enum.Enum):
- COMPLETION = 'completion'
- CHAT = 'chat'
- class PromptTransform:
- def get_prompt(self, mode: str,
- pre_prompt: str, inputs: dict,
- query: str,
- context: Optional[str],
- memory: Optional[BaseChatMemory],
- model_instance: BaseLLM) -> \
- Tuple[List[PromptMessage], Optional[List[str]]]:
- prompt_rules = self._read_prompt_rules_from_file(self._prompt_file_name(mode, model_instance))
- prompt, stops = self._get_prompt_and_stop(prompt_rules, pre_prompt, inputs, query, context, memory, model_instance)
- return [PromptMessage(content=prompt)], stops
- def get_advanced_prompt(self,
- app_mode: str,
- app_model_config: str,
- inputs: dict,
- query: str,
- context: Optional[str],
- memory: Optional[BaseChatMemory],
- model_instance: BaseLLM) -> List[PromptMessage]:
-
- model_mode = app_model_config.model_dict['mode']
- app_mode_enum = AppMode(app_mode)
- model_mode_enum = ModelMode(model_mode)
- prompt_messages = []
- if app_mode_enum == AppMode.CHAT:
- if model_mode_enum == ModelMode.COMPLETION:
- prompt_messages = self._get_chat_app_completion_model_prompt_messages(app_model_config, inputs, query, context, memory, model_instance)
- elif model_mode_enum == ModelMode.CHAT:
- prompt_messages = self._get_chat_app_chat_model_prompt_messages(app_model_config, inputs, query, context, memory, model_instance)
- elif app_mode_enum == AppMode.COMPLETION:
- if model_mode_enum == ModelMode.CHAT:
- prompt_messages = self._get_completion_app_chat_model_prompt_messages(app_model_config, inputs, context)
- elif model_mode_enum == ModelMode.COMPLETION:
- prompt_messages = self._get_completion_app_completion_model_prompt_messages(app_model_config, inputs, context)
-
- return prompt_messages
- def _get_history_messages_from_memory(self, memory: BaseChatMemory,
- max_token_limit: int) -> str:
- """Get memory messages."""
- memory.max_token_limit = max_token_limit
- memory_key = memory.memory_variables[0]
- external_context = memory.load_memory_variables({})
- return external_context[memory_key]
- def _get_history_messages_list_from_memory(self, memory: BaseChatMemory,
- max_token_limit: int) -> List[PromptMessage]:
- """Get memory messages."""
- memory.max_token_limit = max_token_limit
- memory.return_messages = True
- memory_key = memory.memory_variables[0]
- external_context = memory.load_memory_variables({})
- memory.return_messages = False
- return to_prompt_messages(external_context[memory_key])
-
- def _prompt_file_name(self, mode: str, model_instance: BaseLLM) -> str:
- # baichuan
- if isinstance(model_instance, BaichuanModel):
- return self._prompt_file_name_for_baichuan(mode)
- baichuan_model_hosted_platforms = (HuggingfaceHubModel, OpenLLMModel, XinferenceModel)
- if isinstance(model_instance, baichuan_model_hosted_platforms) and 'baichuan' in model_instance.name.lower():
- return self._prompt_file_name_for_baichuan(mode)
- # common
- if mode == 'completion':
- return 'common_completion'
- else:
- return 'common_chat'
-
- def _prompt_file_name_for_baichuan(self, mode: str) -> str:
- if mode == 'completion':
- return 'baichuan_completion'
- else:
- return 'baichuan_chat'
-
- def _read_prompt_rules_from_file(self, prompt_name: str) -> dict:
- # Get the absolute path of the subdirectory
- prompt_path = os.path.join(
- os.path.dirname(os.path.realpath(__file__)),
- 'generate_prompts')
- json_file_path = os.path.join(prompt_path, f'{prompt_name}.json')
- # Open the JSON file and read its content
- with open(json_file_path, 'r') as json_file:
- return json.load(json_file)
-
- def _get_prompt_and_stop(self, prompt_rules: dict, pre_prompt: str, inputs: dict,
- query: str,
- context: Optional[str],
- memory: Optional[BaseChatMemory],
- model_instance: BaseLLM) -> Tuple[str, Optional[list]]:
- context_prompt_content = ''
- if context and 'context_prompt' in prompt_rules:
- prompt_template = PromptTemplateParser(template=prompt_rules['context_prompt'])
- context_prompt_content = prompt_template.format(
- {'context': context}
- )
- pre_prompt_content = ''
- if pre_prompt:
- prompt_template = PromptTemplateParser(template=pre_prompt)
- prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
- pre_prompt_content = prompt_template.format(
- prompt_inputs
- )
- prompt = ''
- for order in prompt_rules['system_prompt_orders']:
- if order == 'context_prompt':
- prompt += context_prompt_content
- elif order == 'pre_prompt':
- prompt += pre_prompt_content
- query_prompt = prompt_rules['query_prompt'] if 'query_prompt' in prompt_rules else '{{query}}'
- if memory and 'histories_prompt' in prompt_rules:
- # append chat histories
- tmp_human_message = PromptBuilder.to_human_message(
- prompt_content=prompt + query_prompt,
- inputs={
- 'query': query
- }
- )
- rest_tokens = self._calculate_rest_token(tmp_human_message, model_instance)
- memory.human_prefix = prompt_rules['human_prefix'] if 'human_prefix' in prompt_rules else 'Human'
- memory.ai_prefix = prompt_rules['assistant_prefix'] if 'assistant_prefix' in prompt_rules else 'Assistant'
- histories = self._get_history_messages_from_memory(memory, rest_tokens)
- prompt_template = PromptTemplateParser(template=prompt_rules['histories_prompt'])
- histories_prompt_content = prompt_template.format({'histories': histories})
- prompt = ''
- for order in prompt_rules['system_prompt_orders']:
- if order == 'context_prompt':
- prompt += context_prompt_content
- elif order == 'pre_prompt':
- prompt += (pre_prompt_content + '\n') if pre_prompt_content else ''
- elif order == 'histories_prompt':
- prompt += histories_prompt_content
- prompt_template = PromptTemplateParser(template=query_prompt)
- query_prompt_content = prompt_template.format({'query': query})
- prompt += query_prompt_content
- prompt = re.sub(r'<\|.*?\|>', '', prompt)
- stops = prompt_rules.get('stops')
- if stops is not None and len(stops) == 0:
- stops = None
- return prompt, stops
-
- def _set_context_variable(self, context: str, prompt_template: PromptTemplateParser, prompt_inputs: dict) -> None:
- if '#context#' in prompt_template.variable_keys:
- if context:
- prompt_inputs['#context#'] = context
- else:
- prompt_inputs['#context#'] = ''
- def _set_query_variable(self, query: str, prompt_template: PromptTemplateParser, prompt_inputs: dict) -> None:
- if '#query#' in prompt_template.variable_keys:
- if query:
- prompt_inputs['#query#'] = query
- else:
- prompt_inputs['#query#'] = ''
- def _set_histories_variable(self, memory: BaseChatMemory, raw_prompt: str, conversation_histories_role: dict,
- prompt_template: PromptTemplateParser, prompt_inputs: dict, model_instance: BaseLLM) -> None:
- if '#histories#' in prompt_template.variable_keys:
- if memory:
- tmp_human_message = PromptBuilder.to_human_message(
- prompt_content=raw_prompt,
- inputs={ '#histories#': '', **prompt_inputs }
- )
- rest_tokens = self._calculate_rest_token(tmp_human_message, model_instance)
-
- memory.human_prefix = conversation_histories_role['user_prefix']
- memory.ai_prefix = conversation_histories_role['assistant_prefix']
- histories = self._get_history_messages_from_memory(memory, rest_tokens)
- prompt_inputs['#histories#'] = histories
- else:
- prompt_inputs['#histories#'] = ''
- def _append_chat_histories(self, memory: BaseChatMemory, prompt_messages: list[PromptMessage], model_instance: BaseLLM) -> None:
- if memory:
- rest_tokens = self._calculate_rest_token(prompt_messages, model_instance)
- memory.human_prefix = MessageType.USER.value
- memory.ai_prefix = MessageType.ASSISTANT.value
- histories = self._get_history_messages_list_from_memory(memory, rest_tokens)
- prompt_messages.extend(histories)
- def _calculate_rest_token(self, prompt_messages: BaseMessage, model_instance: BaseLLM) -> int:
- rest_tokens = 2000
- if model_instance.model_rules.max_tokens.max:
- curr_message_tokens = model_instance.get_num_tokens(to_prompt_messages(prompt_messages))
- max_tokens = model_instance.model_kwargs.max_tokens
- rest_tokens = model_instance.model_rules.max_tokens.max - max_tokens - curr_message_tokens
- rest_tokens = max(rest_tokens, 0)
- return rest_tokens
- def _format_prompt(self, prompt_template: PromptTemplateParser, prompt_inputs: dict) -> str:
- prompt = prompt_template.format(
- prompt_inputs
- )
- prompt = re.sub(r'<\|.*?\|>', '', prompt)
- return prompt
- def _get_chat_app_completion_model_prompt_messages(self,
- app_model_config: str,
- inputs: dict,
- query: str,
- context: Optional[str],
- memory: Optional[BaseChatMemory],
- model_instance: BaseLLM) -> List[PromptMessage]:
-
- raw_prompt = app_model_config.completion_prompt_config_dict['prompt']['text']
- conversation_histories_role = app_model_config.completion_prompt_config_dict['conversation_histories_role']
- prompt_messages = []
- prompt = ''
-
- prompt_template = PromptTemplateParser(template=raw_prompt)
- prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
- self._set_context_variable(context, prompt_template, prompt_inputs)
- self._set_query_variable(query, prompt_template, prompt_inputs)
- self._set_histories_variable(memory, raw_prompt, conversation_histories_role, prompt_template, prompt_inputs, model_instance)
- prompt = self._format_prompt(prompt_template, prompt_inputs)
- prompt_messages.append(PromptMessage(type = MessageType(MessageType.USER) ,content=prompt))
- return prompt_messages
- def _get_chat_app_chat_model_prompt_messages(self,
- app_model_config: str,
- inputs: dict,
- query: str,
- context: Optional[str],
- memory: Optional[BaseChatMemory],
- model_instance: BaseLLM) -> List[PromptMessage]:
- raw_prompt_list = app_model_config.chat_prompt_config_dict['prompt']
- prompt_messages = []
- for prompt_item in raw_prompt_list:
- raw_prompt = prompt_item['text']
- prompt = ''
- prompt_template = PromptTemplateParser(template=raw_prompt)
- prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
- self._set_context_variable(context, prompt_template, prompt_inputs)
- prompt = self._format_prompt(prompt_template, prompt_inputs)
- prompt_messages.append(PromptMessage(type = MessageType(prompt_item['role']) ,content=prompt))
-
- self._append_chat_histories(memory, prompt_messages, model_instance)
- prompt_messages.append(PromptMessage(type = MessageType.USER ,content=query))
- return prompt_messages
- def _get_completion_app_completion_model_prompt_messages(self,
- app_model_config: str,
- inputs: dict,
- context: Optional[str]) -> List[PromptMessage]:
- raw_prompt = app_model_config.completion_prompt_config_dict['prompt']['text']
- prompt_messages = []
- prompt = ''
-
- prompt_template = PromptTemplateParser(template=raw_prompt)
- prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
- self._set_context_variable(context, prompt_template, prompt_inputs)
- prompt = self._format_prompt(prompt_template, prompt_inputs)
- prompt_messages.append(PromptMessage(type = MessageType(MessageType.USER) ,content=prompt))
- return prompt_messages
- def _get_completion_app_chat_model_prompt_messages(self,
- app_model_config: str,
- inputs: dict,
- context: Optional[str]) -> List[PromptMessage]:
- raw_prompt_list = app_model_config.chat_prompt_config_dict['prompt']
- prompt_messages = []
- for prompt_item in raw_prompt_list:
- raw_prompt = prompt_item['text']
- prompt = ''
- prompt_template = PromptTemplateParser(template=raw_prompt)
- prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
- self._set_context_variable(context, prompt_template, prompt_inputs)
- prompt = self._format_prompt(prompt_template, prompt_inputs)
- prompt_messages.append(PromptMessage(type = MessageType(prompt_item['role']) ,content=prompt))
-
- return prompt_messages
|