prompt_transform.py 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344
  1. import json
  2. import os
  3. import re
  4. import enum
  5. from typing import List, Optional, Tuple
  6. from langchain.memory.chat_memory import BaseChatMemory
  7. from langchain.schema import BaseMessage
  8. from core.model_providers.models.entity.model_params import ModelMode
  9. from core.model_providers.models.entity.message import PromptMessage, MessageType, to_prompt_messages
  10. from core.model_providers.models.llm.base import BaseLLM
  11. from core.model_providers.models.llm.baichuan_model import BaichuanModel
  12. from core.model_providers.models.llm.huggingface_hub_model import HuggingfaceHubModel
  13. from core.model_providers.models.llm.openllm_model import OpenLLMModel
  14. from core.model_providers.models.llm.xinference_model import XinferenceModel
  15. from core.prompt.prompt_builder import PromptBuilder
  16. from core.prompt.prompt_template import PromptTemplateParser
  17. class AppMode(enum.Enum):
  18. COMPLETION = 'completion'
  19. CHAT = 'chat'
  20. class PromptTransform:
  21. def get_prompt(self, mode: str,
  22. pre_prompt: str, inputs: dict,
  23. query: str,
  24. context: Optional[str],
  25. memory: Optional[BaseChatMemory],
  26. model_instance: BaseLLM) -> \
  27. Tuple[List[PromptMessage], Optional[List[str]]]:
  28. prompt_rules = self._read_prompt_rules_from_file(self._prompt_file_name(mode, model_instance))
  29. prompt, stops = self._get_prompt_and_stop(prompt_rules, pre_prompt, inputs, query, context, memory, model_instance)
  30. return [PromptMessage(content=prompt)], stops
  31. def get_advanced_prompt(self,
  32. app_mode: str,
  33. app_model_config: str,
  34. inputs: dict,
  35. query: str,
  36. context: Optional[str],
  37. memory: Optional[BaseChatMemory],
  38. model_instance: BaseLLM) -> List[PromptMessage]:
  39. model_mode = app_model_config.model_dict['mode']
  40. app_mode_enum = AppMode(app_mode)
  41. model_mode_enum = ModelMode(model_mode)
  42. prompt_messages = []
  43. if app_mode_enum == AppMode.CHAT:
  44. if model_mode_enum == ModelMode.COMPLETION:
  45. prompt_messages = self._get_chat_app_completion_model_prompt_messages(app_model_config, inputs, query, context, memory, model_instance)
  46. elif model_mode_enum == ModelMode.CHAT:
  47. prompt_messages = self._get_chat_app_chat_model_prompt_messages(app_model_config, inputs, query, context, memory, model_instance)
  48. elif app_mode_enum == AppMode.COMPLETION:
  49. if model_mode_enum == ModelMode.CHAT:
  50. prompt_messages = self._get_completion_app_chat_model_prompt_messages(app_model_config, inputs, context)
  51. elif model_mode_enum == ModelMode.COMPLETION:
  52. prompt_messages = self._get_completion_app_completion_model_prompt_messages(app_model_config, inputs, context)
  53. return prompt_messages
  54. def _get_history_messages_from_memory(self, memory: BaseChatMemory,
  55. max_token_limit: int) -> str:
  56. """Get memory messages."""
  57. memory.max_token_limit = max_token_limit
  58. memory_key = memory.memory_variables[0]
  59. external_context = memory.load_memory_variables({})
  60. return external_context[memory_key]
  61. def _get_history_messages_list_from_memory(self, memory: BaseChatMemory,
  62. max_token_limit: int) -> List[PromptMessage]:
  63. """Get memory messages."""
  64. memory.max_token_limit = max_token_limit
  65. memory.return_messages = True
  66. memory_key = memory.memory_variables[0]
  67. external_context = memory.load_memory_variables({})
  68. memory.return_messages = False
  69. return to_prompt_messages(external_context[memory_key])
  70. def _prompt_file_name(self, mode: str, model_instance: BaseLLM) -> str:
  71. # baichuan
  72. if isinstance(model_instance, BaichuanModel):
  73. return self._prompt_file_name_for_baichuan(mode)
  74. baichuan_model_hosted_platforms = (HuggingfaceHubModel, OpenLLMModel, XinferenceModel)
  75. if isinstance(model_instance, baichuan_model_hosted_platforms) and 'baichuan' in model_instance.name.lower():
  76. return self._prompt_file_name_for_baichuan(mode)
  77. # common
  78. if mode == 'completion':
  79. return 'common_completion'
  80. else:
  81. return 'common_chat'
  82. def _prompt_file_name_for_baichuan(self, mode: str) -> str:
  83. if mode == 'completion':
  84. return 'baichuan_completion'
  85. else:
  86. return 'baichuan_chat'
  87. def _read_prompt_rules_from_file(self, prompt_name: str) -> dict:
  88. # Get the absolute path of the subdirectory
  89. prompt_path = os.path.join(
  90. os.path.dirname(os.path.realpath(__file__)),
  91. 'generate_prompts')
  92. json_file_path = os.path.join(prompt_path, f'{prompt_name}.json')
  93. # Open the JSON file and read its content
  94. with open(json_file_path, 'r') as json_file:
  95. return json.load(json_file)
  96. def _get_prompt_and_stop(self, prompt_rules: dict, pre_prompt: str, inputs: dict,
  97. query: str,
  98. context: Optional[str],
  99. memory: Optional[BaseChatMemory],
  100. model_instance: BaseLLM) -> Tuple[str, Optional[list]]:
  101. context_prompt_content = ''
  102. if context and 'context_prompt' in prompt_rules:
  103. prompt_template = PromptTemplateParser(template=prompt_rules['context_prompt'])
  104. context_prompt_content = prompt_template.format(
  105. {'context': context}
  106. )
  107. pre_prompt_content = ''
  108. if pre_prompt:
  109. prompt_template = PromptTemplateParser(template=pre_prompt)
  110. prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
  111. pre_prompt_content = prompt_template.format(
  112. prompt_inputs
  113. )
  114. prompt = ''
  115. for order in prompt_rules['system_prompt_orders']:
  116. if order == 'context_prompt':
  117. prompt += context_prompt_content
  118. elif order == 'pre_prompt':
  119. prompt += pre_prompt_content
  120. query_prompt = prompt_rules['query_prompt'] if 'query_prompt' in prompt_rules else '{{query}}'
  121. if memory and 'histories_prompt' in prompt_rules:
  122. # append chat histories
  123. tmp_human_message = PromptBuilder.to_human_message(
  124. prompt_content=prompt + query_prompt,
  125. inputs={
  126. 'query': query
  127. }
  128. )
  129. rest_tokens = self._calculate_rest_token(tmp_human_message, model_instance)
  130. memory.human_prefix = prompt_rules['human_prefix'] if 'human_prefix' in prompt_rules else 'Human'
  131. memory.ai_prefix = prompt_rules['assistant_prefix'] if 'assistant_prefix' in prompt_rules else 'Assistant'
  132. histories = self._get_history_messages_from_memory(memory, rest_tokens)
  133. prompt_template = PromptTemplateParser(template=prompt_rules['histories_prompt'])
  134. histories_prompt_content = prompt_template.format({'histories': histories})
  135. prompt = ''
  136. for order in prompt_rules['system_prompt_orders']:
  137. if order == 'context_prompt':
  138. prompt += context_prompt_content
  139. elif order == 'pre_prompt':
  140. prompt += (pre_prompt_content + '\n') if pre_prompt_content else ''
  141. elif order == 'histories_prompt':
  142. prompt += histories_prompt_content
  143. prompt_template = PromptTemplateParser(template=query_prompt)
  144. query_prompt_content = prompt_template.format({'query': query})
  145. prompt += query_prompt_content
  146. prompt = re.sub(r'<\|.*?\|>', '', prompt)
  147. stops = prompt_rules.get('stops')
  148. if stops is not None and len(stops) == 0:
  149. stops = None
  150. return prompt, stops
  151. def _set_context_variable(self, context: str, prompt_template: PromptTemplateParser, prompt_inputs: dict) -> None:
  152. if '#context#' in prompt_template.variable_keys:
  153. if context:
  154. prompt_inputs['#context#'] = context
  155. else:
  156. prompt_inputs['#context#'] = ''
  157. def _set_query_variable(self, query: str, prompt_template: PromptTemplateParser, prompt_inputs: dict) -> None:
  158. if '#query#' in prompt_template.variable_keys:
  159. if query:
  160. prompt_inputs['#query#'] = query
  161. else:
  162. prompt_inputs['#query#'] = ''
  163. def _set_histories_variable(self, memory: BaseChatMemory, raw_prompt: str, conversation_histories_role: dict,
  164. prompt_template: PromptTemplateParser, prompt_inputs: dict, model_instance: BaseLLM) -> None:
  165. if '#histories#' in prompt_template.variable_keys:
  166. if memory:
  167. tmp_human_message = PromptBuilder.to_human_message(
  168. prompt_content=raw_prompt,
  169. inputs={ '#histories#': '', **prompt_inputs }
  170. )
  171. rest_tokens = self._calculate_rest_token(tmp_human_message, model_instance)
  172. memory.human_prefix = conversation_histories_role['user_prefix']
  173. memory.ai_prefix = conversation_histories_role['assistant_prefix']
  174. histories = self._get_history_messages_from_memory(memory, rest_tokens)
  175. prompt_inputs['#histories#'] = histories
  176. else:
  177. prompt_inputs['#histories#'] = ''
  178. def _append_chat_histories(self, memory: BaseChatMemory, prompt_messages: list[PromptMessage], model_instance: BaseLLM) -> None:
  179. if memory:
  180. rest_tokens = self._calculate_rest_token(prompt_messages, model_instance)
  181. memory.human_prefix = MessageType.USER.value
  182. memory.ai_prefix = MessageType.ASSISTANT.value
  183. histories = self._get_history_messages_list_from_memory(memory, rest_tokens)
  184. prompt_messages.extend(histories)
  185. def _calculate_rest_token(self, prompt_messages: BaseMessage, model_instance: BaseLLM) -> int:
  186. rest_tokens = 2000
  187. if model_instance.model_rules.max_tokens.max:
  188. curr_message_tokens = model_instance.get_num_tokens(to_prompt_messages(prompt_messages))
  189. max_tokens = model_instance.model_kwargs.max_tokens
  190. rest_tokens = model_instance.model_rules.max_tokens.max - max_tokens - curr_message_tokens
  191. rest_tokens = max(rest_tokens, 0)
  192. return rest_tokens
  193. def _format_prompt(self, prompt_template: PromptTemplateParser, prompt_inputs: dict) -> str:
  194. prompt = prompt_template.format(
  195. prompt_inputs
  196. )
  197. prompt = re.sub(r'<\|.*?\|>', '', prompt)
  198. return prompt
  199. def _get_chat_app_completion_model_prompt_messages(self,
  200. app_model_config: str,
  201. inputs: dict,
  202. query: str,
  203. context: Optional[str],
  204. memory: Optional[BaseChatMemory],
  205. model_instance: BaseLLM) -> List[PromptMessage]:
  206. raw_prompt = app_model_config.completion_prompt_config_dict['prompt']['text']
  207. conversation_histories_role = app_model_config.completion_prompt_config_dict['conversation_histories_role']
  208. prompt_messages = []
  209. prompt = ''
  210. prompt_template = PromptTemplateParser(template=raw_prompt)
  211. prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
  212. self._set_context_variable(context, prompt_template, prompt_inputs)
  213. self._set_query_variable(query, prompt_template, prompt_inputs)
  214. self._set_histories_variable(memory, raw_prompt, conversation_histories_role, prompt_template, prompt_inputs, model_instance)
  215. prompt = self._format_prompt(prompt_template, prompt_inputs)
  216. prompt_messages.append(PromptMessage(type = MessageType(MessageType.USER) ,content=prompt))
  217. return prompt_messages
  218. def _get_chat_app_chat_model_prompt_messages(self,
  219. app_model_config: str,
  220. inputs: dict,
  221. query: str,
  222. context: Optional[str],
  223. memory: Optional[BaseChatMemory],
  224. model_instance: BaseLLM) -> List[PromptMessage]:
  225. raw_prompt_list = app_model_config.chat_prompt_config_dict['prompt']
  226. prompt_messages = []
  227. for prompt_item in raw_prompt_list:
  228. raw_prompt = prompt_item['text']
  229. prompt = ''
  230. prompt_template = PromptTemplateParser(template=raw_prompt)
  231. prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
  232. self._set_context_variable(context, prompt_template, prompt_inputs)
  233. prompt = self._format_prompt(prompt_template, prompt_inputs)
  234. prompt_messages.append(PromptMessage(type = MessageType(prompt_item['role']) ,content=prompt))
  235. self._append_chat_histories(memory, prompt_messages, model_instance)
  236. prompt_messages.append(PromptMessage(type = MessageType.USER ,content=query))
  237. return prompt_messages
  238. def _get_completion_app_completion_model_prompt_messages(self,
  239. app_model_config: str,
  240. inputs: dict,
  241. context: Optional[str]) -> List[PromptMessage]:
  242. raw_prompt = app_model_config.completion_prompt_config_dict['prompt']['text']
  243. prompt_messages = []
  244. prompt = ''
  245. prompt_template = PromptTemplateParser(template=raw_prompt)
  246. prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
  247. self._set_context_variable(context, prompt_template, prompt_inputs)
  248. prompt = self._format_prompt(prompt_template, prompt_inputs)
  249. prompt_messages.append(PromptMessage(type = MessageType(MessageType.USER) ,content=prompt))
  250. return prompt_messages
  251. def _get_completion_app_chat_model_prompt_messages(self,
  252. app_model_config: str,
  253. inputs: dict,
  254. context: Optional[str]) -> List[PromptMessage]:
  255. raw_prompt_list = app_model_config.chat_prompt_config_dict['prompt']
  256. prompt_messages = []
  257. for prompt_item in raw_prompt_list:
  258. raw_prompt = prompt_item['text']
  259. prompt = ''
  260. prompt_template = PromptTemplateParser(template=raw_prompt)
  261. prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
  262. self._set_context_variable(context, prompt_template, prompt_inputs)
  263. prompt = self._format_prompt(prompt_template, prompt_inputs)
  264. prompt_messages.append(PromptMessage(type = MessageType(prompt_item['role']) ,content=prompt))
  265. return prompt_messages