node.py 42 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041
  1. import json
  2. import logging
  3. from collections.abc import Generator, Mapping, Sequence
  4. from typing import TYPE_CHECKING, Any, Optional, cast
  5. from configs import dify_config
  6. from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEntity
  7. from core.entities.model_entities import ModelStatus
  8. from core.entities.provider_entities import QuotaUnit
  9. from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
  10. from core.file import FileType, file_manager
  11. from core.helper.code_executor import CodeExecutor, CodeLanguage
  12. from core.memory.token_buffer_memory import TokenBufferMemory
  13. from core.model_manager import ModelInstance, ModelManager
  14. from core.model_runtime.entities import (
  15. ImagePromptMessageContent,
  16. PromptMessage,
  17. PromptMessageContentType,
  18. TextPromptMessageContent,
  19. )
  20. from core.model_runtime.entities.llm_entities import LLMResult, LLMUsage
  21. from core.model_runtime.entities.message_entities import (
  22. AssistantPromptMessage,
  23. PromptMessageContent,
  24. PromptMessageRole,
  25. SystemPromptMessage,
  26. UserPromptMessage,
  27. )
  28. from core.model_runtime.entities.model_entities import ModelFeature, ModelPropertyKey, ModelType
  29. from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
  30. from core.model_runtime.utils.encoders import jsonable_encoder
  31. from core.prompt.entities.advanced_prompt_entities import CompletionModelPromptTemplate, MemoryConfig
  32. from core.prompt.utils.prompt_message_util import PromptMessageUtil
  33. from core.variables import (
  34. ArrayAnySegment,
  35. ArrayFileSegment,
  36. ArraySegment,
  37. FileSegment,
  38. NoneSegment,
  39. ObjectSegment,
  40. StringSegment,
  41. )
  42. from core.workflow.constants import SYSTEM_VARIABLE_NODE_ID
  43. from core.workflow.entities.node_entities import NodeRunMetadataKey, NodeRunResult
  44. from core.workflow.entities.variable_entities import VariableSelector
  45. from core.workflow.entities.variable_pool import VariablePool
  46. from core.workflow.enums import SystemVariableKey
  47. from core.workflow.graph_engine.entities.event import InNodeEvent
  48. from core.workflow.nodes.base import BaseNode
  49. from core.workflow.nodes.enums import NodeType
  50. from core.workflow.nodes.event import (
  51. ModelInvokeCompletedEvent,
  52. NodeEvent,
  53. RunCompletedEvent,
  54. RunRetrieverResourceEvent,
  55. RunStreamChunkEvent,
  56. )
  57. from core.workflow.utils.variable_template_parser import VariableTemplateParser
  58. from extensions.ext_database import db
  59. from models.model import Conversation
  60. from models.provider import Provider, ProviderType
  61. from models.workflow import WorkflowNodeExecutionStatus
  62. from .entities import (
  63. LLMNodeChatModelMessage,
  64. LLMNodeCompletionModelPromptTemplate,
  65. LLMNodeData,
  66. ModelConfig,
  67. )
  68. from .exc import (
  69. InvalidContextStructureError,
  70. InvalidVariableTypeError,
  71. LLMModeRequiredError,
  72. LLMNodeError,
  73. MemoryRolePrefixRequiredError,
  74. ModelNotExistError,
  75. NoPromptFoundError,
  76. TemplateTypeNotSupportError,
  77. VariableNotFoundError,
  78. )
  79. if TYPE_CHECKING:
  80. from core.file.models import File
  81. logger = logging.getLogger(__name__)
  82. class LLMNode(BaseNode[LLMNodeData]):
  83. _node_data_cls = LLMNodeData
  84. _node_type = NodeType.LLM
  85. def _run(self) -> Generator[NodeEvent | InNodeEvent, None, None]:
  86. node_inputs: Optional[dict[str, Any]] = None
  87. process_data = None
  88. try:
  89. # init messages template
  90. self.node_data.prompt_template = self._transform_chat_messages(self.node_data.prompt_template)
  91. # fetch variables and fetch values from variable pool
  92. inputs = self._fetch_inputs(node_data=self.node_data)
  93. # fetch jinja2 inputs
  94. jinja_inputs = self._fetch_jinja_inputs(node_data=self.node_data)
  95. # merge inputs
  96. inputs.update(jinja_inputs)
  97. node_inputs = {}
  98. # fetch files
  99. files = (
  100. self._fetch_files(selector=self.node_data.vision.configs.variable_selector)
  101. if self.node_data.vision.enabled
  102. else []
  103. )
  104. if files:
  105. node_inputs["#files#"] = [file.to_dict() for file in files]
  106. # fetch context value
  107. generator = self._fetch_context(node_data=self.node_data)
  108. context = None
  109. for event in generator:
  110. if isinstance(event, RunRetrieverResourceEvent):
  111. context = event.context
  112. yield event
  113. if context:
  114. node_inputs["#context#"] = context
  115. # fetch model config
  116. model_instance, model_config = self._fetch_model_config(self.node_data.model)
  117. # fetch memory
  118. memory = self._fetch_memory(node_data_memory=self.node_data.memory, model_instance=model_instance)
  119. query = None
  120. if self.node_data.memory:
  121. query = self.node_data.memory.query_prompt_template
  122. if not query and (
  123. query_variable := self.graph_runtime_state.variable_pool.get(
  124. (SYSTEM_VARIABLE_NODE_ID, SystemVariableKey.QUERY)
  125. )
  126. ):
  127. query = query_variable.text
  128. prompt_messages, stop = self._fetch_prompt_messages(
  129. sys_query=query,
  130. sys_files=files,
  131. context=context,
  132. memory=memory,
  133. model_config=model_config,
  134. prompt_template=self.node_data.prompt_template,
  135. memory_config=self.node_data.memory,
  136. vision_enabled=self.node_data.vision.enabled,
  137. vision_detail=self.node_data.vision.configs.detail,
  138. variable_pool=self.graph_runtime_state.variable_pool,
  139. jinja2_variables=self.node_data.prompt_config.jinja2_variables,
  140. )
  141. process_data = {
  142. "model_mode": model_config.mode,
  143. "prompts": PromptMessageUtil.prompt_messages_to_prompt_for_saving(
  144. model_mode=model_config.mode, prompt_messages=prompt_messages
  145. ),
  146. "model_provider": model_config.provider,
  147. "model_name": model_config.model,
  148. }
  149. # handle invoke result
  150. generator = self._invoke_llm(
  151. node_data_model=self.node_data.model,
  152. model_instance=model_instance,
  153. prompt_messages=prompt_messages,
  154. stop=stop,
  155. )
  156. result_text = ""
  157. usage = LLMUsage.empty_usage()
  158. finish_reason = None
  159. for event in generator:
  160. if isinstance(event, RunStreamChunkEvent):
  161. yield event
  162. elif isinstance(event, ModelInvokeCompletedEvent):
  163. result_text = event.text
  164. usage = event.usage
  165. finish_reason = event.finish_reason
  166. # deduct quota
  167. self.deduct_llm_quota(tenant_id=self.tenant_id, model_instance=model_instance, usage=usage)
  168. break
  169. except LLMNodeError as e:
  170. yield RunCompletedEvent(
  171. run_result=NodeRunResult(
  172. status=WorkflowNodeExecutionStatus.FAILED,
  173. error=str(e),
  174. inputs=node_inputs,
  175. process_data=process_data,
  176. error_type=type(e).__name__,
  177. )
  178. )
  179. except Exception as e:
  180. yield RunCompletedEvent(
  181. run_result=NodeRunResult(
  182. status=WorkflowNodeExecutionStatus.FAILED,
  183. error=str(e),
  184. inputs=node_inputs,
  185. process_data=process_data,
  186. )
  187. )
  188. outputs = {"text": result_text, "usage": jsonable_encoder(usage), "finish_reason": finish_reason}
  189. yield RunCompletedEvent(
  190. run_result=NodeRunResult(
  191. status=WorkflowNodeExecutionStatus.SUCCEEDED,
  192. inputs=node_inputs,
  193. process_data=process_data,
  194. outputs=outputs,
  195. metadata={
  196. NodeRunMetadataKey.TOTAL_TOKENS: usage.total_tokens,
  197. NodeRunMetadataKey.TOTAL_PRICE: usage.total_price,
  198. NodeRunMetadataKey.CURRENCY: usage.currency,
  199. },
  200. llm_usage=usage,
  201. )
  202. )
  203. def _invoke_llm(
  204. self,
  205. node_data_model: ModelConfig,
  206. model_instance: ModelInstance,
  207. prompt_messages: Sequence[PromptMessage],
  208. stop: Optional[Sequence[str]] = None,
  209. ) -> Generator[NodeEvent, None, None]:
  210. db.session.close()
  211. invoke_result = model_instance.invoke_llm(
  212. prompt_messages=prompt_messages,
  213. model_parameters=node_data_model.completion_params,
  214. stop=stop,
  215. stream=True,
  216. user=self.user_id,
  217. )
  218. return self._handle_invoke_result(invoke_result=invoke_result)
  219. def _handle_invoke_result(self, invoke_result: LLMResult | Generator) -> Generator[NodeEvent, None, None]:
  220. if isinstance(invoke_result, LLMResult):
  221. return
  222. model = None
  223. prompt_messages: list[PromptMessage] = []
  224. full_text = ""
  225. usage = None
  226. finish_reason = None
  227. for result in invoke_result:
  228. text = result.delta.message.content
  229. full_text += text
  230. yield RunStreamChunkEvent(chunk_content=text, from_variable_selector=[self.node_id, "text"])
  231. if not model:
  232. model = result.model
  233. if not prompt_messages:
  234. prompt_messages = result.prompt_messages
  235. if not usage and result.delta.usage:
  236. usage = result.delta.usage
  237. if not finish_reason and result.delta.finish_reason:
  238. finish_reason = result.delta.finish_reason
  239. if not usage:
  240. usage = LLMUsage.empty_usage()
  241. yield ModelInvokeCompletedEvent(text=full_text, usage=usage, finish_reason=finish_reason)
  242. def _transform_chat_messages(
  243. self, messages: Sequence[LLMNodeChatModelMessage] | LLMNodeCompletionModelPromptTemplate, /
  244. ) -> Sequence[LLMNodeChatModelMessage] | LLMNodeCompletionModelPromptTemplate:
  245. if isinstance(messages, LLMNodeCompletionModelPromptTemplate):
  246. if messages.edition_type == "jinja2" and messages.jinja2_text:
  247. messages.text = messages.jinja2_text
  248. return messages
  249. for message in messages:
  250. if message.edition_type == "jinja2" and message.jinja2_text:
  251. message.text = message.jinja2_text
  252. return messages
  253. def _fetch_jinja_inputs(self, node_data: LLMNodeData) -> dict[str, str]:
  254. variables: dict[str, Any] = {}
  255. if not node_data.prompt_config:
  256. return variables
  257. for variable_selector in node_data.prompt_config.jinja2_variables or []:
  258. variable_name = variable_selector.variable
  259. variable = self.graph_runtime_state.variable_pool.get(variable_selector.value_selector)
  260. if variable is None:
  261. raise VariableNotFoundError(f"Variable {variable_selector.variable} not found")
  262. def parse_dict(input_dict: Mapping[str, Any]) -> str:
  263. """
  264. Parse dict into string
  265. """
  266. # check if it's a context structure
  267. if "metadata" in input_dict and "_source" in input_dict["metadata"] and "content" in input_dict:
  268. return str(input_dict["content"])
  269. # else, parse the dict
  270. try:
  271. return json.dumps(input_dict, ensure_ascii=False)
  272. except Exception:
  273. return str(input_dict)
  274. if isinstance(variable, ArraySegment):
  275. result = ""
  276. for item in variable.value:
  277. if isinstance(item, dict):
  278. result += parse_dict(item)
  279. else:
  280. result += str(item)
  281. result += "\n"
  282. value = result.strip()
  283. elif isinstance(variable, ObjectSegment):
  284. value = parse_dict(variable.value)
  285. else:
  286. value = variable.text
  287. variables[variable_name] = value
  288. return variables
  289. def _fetch_inputs(self, node_data: LLMNodeData) -> dict[str, Any]:
  290. inputs = {}
  291. prompt_template = node_data.prompt_template
  292. variable_selectors = []
  293. if isinstance(prompt_template, list):
  294. for prompt in prompt_template:
  295. variable_template_parser = VariableTemplateParser(template=prompt.text)
  296. variable_selectors.extend(variable_template_parser.extract_variable_selectors())
  297. elif isinstance(prompt_template, CompletionModelPromptTemplate):
  298. variable_template_parser = VariableTemplateParser(template=prompt_template.text)
  299. variable_selectors = variable_template_parser.extract_variable_selectors()
  300. for variable_selector in variable_selectors:
  301. variable = self.graph_runtime_state.variable_pool.get(variable_selector.value_selector)
  302. if variable is None:
  303. raise VariableNotFoundError(f"Variable {variable_selector.variable} not found")
  304. if isinstance(variable, NoneSegment):
  305. inputs[variable_selector.variable] = ""
  306. inputs[variable_selector.variable] = variable.to_object()
  307. memory = node_data.memory
  308. if memory and memory.query_prompt_template:
  309. query_variable_selectors = VariableTemplateParser(
  310. template=memory.query_prompt_template
  311. ).extract_variable_selectors()
  312. for variable_selector in query_variable_selectors:
  313. variable = self.graph_runtime_state.variable_pool.get(variable_selector.value_selector)
  314. if variable is None:
  315. raise VariableNotFoundError(f"Variable {variable_selector.variable} not found")
  316. if isinstance(variable, NoneSegment):
  317. continue
  318. inputs[variable_selector.variable] = variable.to_object()
  319. return inputs
  320. def _fetch_files(self, *, selector: Sequence[str]) -> Sequence["File"]:
  321. variable = self.graph_runtime_state.variable_pool.get(selector)
  322. if variable is None:
  323. return []
  324. elif isinstance(variable, FileSegment):
  325. return [variable.value]
  326. elif isinstance(variable, ArrayFileSegment):
  327. return variable.value
  328. elif isinstance(variable, NoneSegment | ArrayAnySegment):
  329. return []
  330. raise InvalidVariableTypeError(f"Invalid variable type: {type(variable)}")
  331. def _fetch_context(self, node_data: LLMNodeData):
  332. if not node_data.context.enabled:
  333. return
  334. if not node_data.context.variable_selector:
  335. return
  336. context_value_variable = self.graph_runtime_state.variable_pool.get(node_data.context.variable_selector)
  337. if context_value_variable:
  338. if isinstance(context_value_variable, StringSegment):
  339. yield RunRetrieverResourceEvent(retriever_resources=[], context=context_value_variable.value)
  340. elif isinstance(context_value_variable, ArraySegment):
  341. context_str = ""
  342. original_retriever_resource = []
  343. for item in context_value_variable.value:
  344. if isinstance(item, str):
  345. context_str += item + "\n"
  346. else:
  347. if "content" not in item:
  348. raise InvalidContextStructureError(f"Invalid context structure: {item}")
  349. context_str += item["content"] + "\n"
  350. retriever_resource = self._convert_to_original_retriever_resource(item)
  351. if retriever_resource:
  352. original_retriever_resource.append(retriever_resource)
  353. yield RunRetrieverResourceEvent(
  354. retriever_resources=original_retriever_resource, context=context_str.strip()
  355. )
  356. def _convert_to_original_retriever_resource(self, context_dict: dict) -> Optional[dict]:
  357. if (
  358. "metadata" in context_dict
  359. and "_source" in context_dict["metadata"]
  360. and context_dict["metadata"]["_source"] == "knowledge"
  361. ):
  362. metadata = context_dict.get("metadata", {})
  363. source = {
  364. "position": metadata.get("position"),
  365. "dataset_id": metadata.get("dataset_id"),
  366. "dataset_name": metadata.get("dataset_name"),
  367. "document_id": metadata.get("document_id"),
  368. "document_name": metadata.get("document_name"),
  369. "data_source_type": metadata.get("document_data_source_type"),
  370. "segment_id": metadata.get("segment_id"),
  371. "retriever_from": metadata.get("retriever_from"),
  372. "score": metadata.get("score"),
  373. "hit_count": metadata.get("segment_hit_count"),
  374. "word_count": metadata.get("segment_word_count"),
  375. "segment_position": metadata.get("segment_position"),
  376. "index_node_hash": metadata.get("segment_index_node_hash"),
  377. "content": context_dict.get("content"),
  378. "page": metadata.get("page"),
  379. }
  380. return source
  381. return None
  382. def _fetch_model_config(
  383. self, node_data_model: ModelConfig
  384. ) -> tuple[ModelInstance, ModelConfigWithCredentialsEntity]:
  385. model_name = node_data_model.name
  386. provider_name = node_data_model.provider
  387. model_manager = ModelManager()
  388. model_instance = model_manager.get_model_instance(
  389. tenant_id=self.tenant_id, model_type=ModelType.LLM, provider=provider_name, model=model_name
  390. )
  391. provider_model_bundle = model_instance.provider_model_bundle
  392. model_type_instance = model_instance.model_type_instance
  393. model_type_instance = cast(LargeLanguageModel, model_type_instance)
  394. model_credentials = model_instance.credentials
  395. # check model
  396. provider_model = provider_model_bundle.configuration.get_provider_model(
  397. model=model_name, model_type=ModelType.LLM
  398. )
  399. if provider_model is None:
  400. raise ModelNotExistError(f"Model {model_name} not exist.")
  401. if provider_model.status == ModelStatus.NO_CONFIGURE:
  402. raise ProviderTokenNotInitError(f"Model {model_name} credentials is not initialized.")
  403. elif provider_model.status == ModelStatus.NO_PERMISSION:
  404. raise ModelCurrentlyNotSupportError(f"Dify Hosted OpenAI {model_name} currently not support.")
  405. elif provider_model.status == ModelStatus.QUOTA_EXCEEDED:
  406. raise QuotaExceededError(f"Model provider {provider_name} quota exceeded.")
  407. # model config
  408. completion_params = node_data_model.completion_params
  409. stop = []
  410. if "stop" in completion_params:
  411. stop = completion_params["stop"]
  412. del completion_params["stop"]
  413. # get model mode
  414. model_mode = node_data_model.mode
  415. if not model_mode:
  416. raise LLMModeRequiredError("LLM mode is required.")
  417. model_schema = model_type_instance.get_model_schema(model_name, model_credentials)
  418. if not model_schema:
  419. raise ModelNotExistError(f"Model {model_name} not exist.")
  420. return model_instance, ModelConfigWithCredentialsEntity(
  421. provider=provider_name,
  422. model=model_name,
  423. model_schema=model_schema,
  424. mode=model_mode,
  425. provider_model_bundle=provider_model_bundle,
  426. credentials=model_credentials,
  427. parameters=completion_params,
  428. stop=stop,
  429. )
  430. def _fetch_memory(
  431. self, node_data_memory: Optional[MemoryConfig], model_instance: ModelInstance
  432. ) -> Optional[TokenBufferMemory]:
  433. if not node_data_memory:
  434. return None
  435. # get conversation id
  436. conversation_id_variable = self.graph_runtime_state.variable_pool.get(
  437. ["sys", SystemVariableKey.CONVERSATION_ID.value]
  438. )
  439. if not isinstance(conversation_id_variable, StringSegment):
  440. return None
  441. conversation_id = conversation_id_variable.value
  442. # get conversation
  443. conversation = (
  444. db.session.query(Conversation)
  445. .filter(Conversation.app_id == self.app_id, Conversation.id == conversation_id)
  446. .first()
  447. )
  448. if not conversation:
  449. return None
  450. memory = TokenBufferMemory(conversation=conversation, model_instance=model_instance)
  451. return memory
  452. def _fetch_prompt_messages(
  453. self,
  454. *,
  455. sys_query: str | None = None,
  456. sys_files: Sequence["File"],
  457. context: str | None = None,
  458. memory: TokenBufferMemory | None = None,
  459. model_config: ModelConfigWithCredentialsEntity,
  460. prompt_template: Sequence[LLMNodeChatModelMessage] | LLMNodeCompletionModelPromptTemplate,
  461. memory_config: MemoryConfig | None = None,
  462. vision_enabled: bool = False,
  463. vision_detail: ImagePromptMessageContent.DETAIL,
  464. variable_pool: VariablePool,
  465. jinja2_variables: Sequence[VariableSelector],
  466. ) -> tuple[Sequence[PromptMessage], Optional[Sequence[str]]]:
  467. # FIXME: fix the type error cause prompt_messages is type quick a few times
  468. prompt_messages: list[Any] = []
  469. if isinstance(prompt_template, list):
  470. # For chat model
  471. prompt_messages.extend(
  472. self._handle_list_messages(
  473. messages=prompt_template,
  474. context=context,
  475. jinja2_variables=jinja2_variables,
  476. variable_pool=variable_pool,
  477. vision_detail_config=vision_detail,
  478. )
  479. )
  480. # Get memory messages for chat mode
  481. memory_messages = _handle_memory_chat_mode(
  482. memory=memory,
  483. memory_config=memory_config,
  484. model_config=model_config,
  485. )
  486. # Extend prompt_messages with memory messages
  487. prompt_messages.extend(memory_messages)
  488. # Add current query to the prompt messages
  489. if sys_query:
  490. message = LLMNodeChatModelMessage(
  491. text=sys_query,
  492. role=PromptMessageRole.USER,
  493. edition_type="basic",
  494. )
  495. prompt_messages.extend(
  496. self._handle_list_messages(
  497. messages=[message],
  498. context="",
  499. jinja2_variables=[],
  500. variable_pool=variable_pool,
  501. vision_detail_config=vision_detail,
  502. )
  503. )
  504. elif isinstance(prompt_template, LLMNodeCompletionModelPromptTemplate):
  505. # For completion model
  506. prompt_messages.extend(
  507. _handle_completion_template(
  508. template=prompt_template,
  509. context=context,
  510. jinja2_variables=jinja2_variables,
  511. variable_pool=variable_pool,
  512. )
  513. )
  514. # Get memory text for completion model
  515. memory_text = _handle_memory_completion_mode(
  516. memory=memory,
  517. memory_config=memory_config,
  518. model_config=model_config,
  519. )
  520. # Insert histories into the prompt
  521. prompt_content = prompt_messages[0].content
  522. # For issue #11247 - Check if prompt content is a string or a list
  523. prompt_content_type = type(prompt_content)
  524. if prompt_content_type == str:
  525. if "#histories#" in prompt_content:
  526. prompt_content = prompt_content.replace("#histories#", memory_text)
  527. else:
  528. prompt_content = memory_text + "\n" + prompt_content
  529. prompt_messages[0].content = prompt_content
  530. elif prompt_content_type == list:
  531. for content_item in prompt_content:
  532. if content_item.type == PromptMessageContentType.TEXT:
  533. if "#histories#" in content_item.data:
  534. content_item.data = content_item.data.replace("#histories#", memory_text)
  535. else:
  536. content_item.data = memory_text + "\n" + content_item.data
  537. else:
  538. raise ValueError("Invalid prompt content type")
  539. # Add current query to the prompt message
  540. if sys_query:
  541. if prompt_content_type == str:
  542. prompt_content = prompt_messages[0].content.replace("#sys.query#", sys_query)
  543. prompt_messages[0].content = prompt_content
  544. elif prompt_content_type == list:
  545. for content_item in prompt_content:
  546. if content_item.type == PromptMessageContentType.TEXT:
  547. content_item.data = sys_query + "\n" + content_item.data
  548. else:
  549. raise ValueError("Invalid prompt content type")
  550. else:
  551. raise TemplateTypeNotSupportError(type_name=str(type(prompt_template)))
  552. # The sys_files will be deprecated later
  553. if vision_enabled and sys_files:
  554. file_prompts = []
  555. for file in sys_files:
  556. file_prompt = file_manager.to_prompt_message_content(file, image_detail_config=vision_detail)
  557. file_prompts.append(file_prompt)
  558. # If last prompt is a user prompt, add files into its contents,
  559. # otherwise append a new user prompt
  560. if (
  561. len(prompt_messages) > 0
  562. and isinstance(prompt_messages[-1], UserPromptMessage)
  563. and isinstance(prompt_messages[-1].content, list)
  564. ):
  565. prompt_messages[-1] = UserPromptMessage(content=prompt_messages[-1].content + file_prompts)
  566. else:
  567. prompt_messages.append(UserPromptMessage(content=file_prompts))
  568. # Remove empty messages and filter unsupported content
  569. filtered_prompt_messages = []
  570. for prompt_message in prompt_messages:
  571. if isinstance(prompt_message.content, list):
  572. prompt_message_content = []
  573. for content_item in prompt_message.content:
  574. # Skip content if features are not defined
  575. if not model_config.model_schema.features:
  576. if content_item.type != PromptMessageContentType.TEXT:
  577. continue
  578. prompt_message_content.append(content_item)
  579. continue
  580. # Skip content if corresponding feature is not supported
  581. if (
  582. (
  583. content_item.type == PromptMessageContentType.IMAGE
  584. and ModelFeature.VISION not in model_config.model_schema.features
  585. )
  586. or (
  587. content_item.type == PromptMessageContentType.DOCUMENT
  588. and ModelFeature.DOCUMENT not in model_config.model_schema.features
  589. )
  590. or (
  591. content_item.type == PromptMessageContentType.VIDEO
  592. and ModelFeature.VIDEO not in model_config.model_schema.features
  593. )
  594. or (
  595. content_item.type == PromptMessageContentType.AUDIO
  596. and ModelFeature.AUDIO not in model_config.model_schema.features
  597. )
  598. ):
  599. continue
  600. prompt_message_content.append(content_item)
  601. if len(prompt_message_content) == 1 and prompt_message_content[0].type == PromptMessageContentType.TEXT:
  602. prompt_message.content = prompt_message_content[0].data
  603. else:
  604. prompt_message.content = prompt_message_content
  605. if prompt_message.is_empty():
  606. continue
  607. filtered_prompt_messages.append(prompt_message)
  608. if len(filtered_prompt_messages) == 0:
  609. raise NoPromptFoundError(
  610. "No prompt found in the LLM configuration. "
  611. "Please ensure a prompt is properly configured before proceeding."
  612. )
  613. stop = model_config.stop
  614. return filtered_prompt_messages, stop
  615. @classmethod
  616. def deduct_llm_quota(cls, tenant_id: str, model_instance: ModelInstance, usage: LLMUsage) -> None:
  617. provider_model_bundle = model_instance.provider_model_bundle
  618. provider_configuration = provider_model_bundle.configuration
  619. if provider_configuration.using_provider_type != ProviderType.SYSTEM:
  620. return
  621. system_configuration = provider_configuration.system_configuration
  622. quota_unit = None
  623. for quota_configuration in system_configuration.quota_configurations:
  624. if quota_configuration.quota_type == system_configuration.current_quota_type:
  625. quota_unit = quota_configuration.quota_unit
  626. if quota_configuration.quota_limit == -1:
  627. return
  628. break
  629. used_quota = None
  630. if quota_unit:
  631. if quota_unit == QuotaUnit.TOKENS:
  632. used_quota = usage.total_tokens
  633. elif quota_unit == QuotaUnit.CREDITS:
  634. used_quota = dify_config.get_model_credits(model_instance.model)
  635. else:
  636. used_quota = 1
  637. if used_quota is not None and system_configuration.current_quota_type is not None:
  638. db.session.query(Provider).filter(
  639. Provider.tenant_id == tenant_id,
  640. Provider.provider_name == model_instance.provider,
  641. Provider.provider_type == ProviderType.SYSTEM.value,
  642. Provider.quota_type == system_configuration.current_quota_type.value,
  643. Provider.quota_limit > Provider.quota_used,
  644. ).update({"quota_used": Provider.quota_used + used_quota})
  645. db.session.commit()
  646. @classmethod
  647. def _extract_variable_selector_to_variable_mapping(
  648. cls,
  649. *,
  650. graph_config: Mapping[str, Any],
  651. node_id: str,
  652. node_data: LLMNodeData,
  653. ) -> Mapping[str, Sequence[str]]:
  654. prompt_template = node_data.prompt_template
  655. variable_selectors = []
  656. if isinstance(prompt_template, list) and all(
  657. isinstance(prompt, LLMNodeChatModelMessage) for prompt in prompt_template
  658. ):
  659. for prompt in prompt_template:
  660. if prompt.edition_type != "jinja2":
  661. variable_template_parser = VariableTemplateParser(template=prompt.text)
  662. variable_selectors.extend(variable_template_parser.extract_variable_selectors())
  663. elif isinstance(prompt_template, LLMNodeCompletionModelPromptTemplate):
  664. if prompt_template.edition_type != "jinja2":
  665. variable_template_parser = VariableTemplateParser(template=prompt_template.text)
  666. variable_selectors = variable_template_parser.extract_variable_selectors()
  667. else:
  668. raise InvalidVariableTypeError(f"Invalid prompt template type: {type(prompt_template)}")
  669. variable_mapping: dict[str, Any] = {}
  670. for variable_selector in variable_selectors:
  671. variable_mapping[variable_selector.variable] = variable_selector.value_selector
  672. memory = node_data.memory
  673. if memory and memory.query_prompt_template:
  674. query_variable_selectors = VariableTemplateParser(
  675. template=memory.query_prompt_template
  676. ).extract_variable_selectors()
  677. for variable_selector in query_variable_selectors:
  678. variable_mapping[variable_selector.variable] = variable_selector.value_selector
  679. if node_data.context.enabled:
  680. variable_mapping["#context#"] = node_data.context.variable_selector
  681. if node_data.vision.enabled:
  682. variable_mapping["#files#"] = ["sys", SystemVariableKey.FILES.value]
  683. if node_data.memory:
  684. variable_mapping["#sys.query#"] = ["sys", SystemVariableKey.QUERY.value]
  685. if node_data.prompt_config:
  686. enable_jinja = False
  687. if isinstance(prompt_template, list):
  688. for prompt in prompt_template:
  689. if prompt.edition_type == "jinja2":
  690. enable_jinja = True
  691. break
  692. else:
  693. if prompt_template.edition_type == "jinja2":
  694. enable_jinja = True
  695. if enable_jinja:
  696. for variable_selector in node_data.prompt_config.jinja2_variables or []:
  697. variable_mapping[variable_selector.variable] = variable_selector.value_selector
  698. variable_mapping = {node_id + "." + key: value for key, value in variable_mapping.items()}
  699. return variable_mapping
  700. @classmethod
  701. def get_default_config(cls, filters: Optional[dict] = None) -> dict:
  702. return {
  703. "type": "llm",
  704. "config": {
  705. "prompt_templates": {
  706. "chat_model": {
  707. "prompts": [
  708. {"role": "system", "text": "You are a helpful AI assistant.", "edition_type": "basic"}
  709. ]
  710. },
  711. "completion_model": {
  712. "conversation_histories_role": {"user_prefix": "Human", "assistant_prefix": "Assistant"},
  713. "prompt": {
  714. "text": "Here are the chat histories between human and assistant, inside "
  715. "<histories></histories> XML tags.\n\n<histories>\n{{"
  716. "#histories#}}\n</histories>\n\n\nHuman: {{#sys.query#}}\n\nAssistant:",
  717. "edition_type": "basic",
  718. },
  719. "stop": ["Human:"],
  720. },
  721. }
  722. },
  723. }
  724. def _handle_list_messages(
  725. self,
  726. *,
  727. messages: Sequence[LLMNodeChatModelMessage],
  728. context: Optional[str],
  729. jinja2_variables: Sequence[VariableSelector],
  730. variable_pool: VariablePool,
  731. vision_detail_config: ImagePromptMessageContent.DETAIL,
  732. ) -> Sequence[PromptMessage]:
  733. prompt_messages: list[PromptMessage] = []
  734. for message in messages:
  735. if message.edition_type == "jinja2":
  736. result_text = _render_jinja2_message(
  737. template=message.jinja2_text or "",
  738. jinjia2_variables=jinja2_variables,
  739. variable_pool=variable_pool,
  740. )
  741. prompt_message = _combine_message_content_with_role(
  742. contents=[TextPromptMessageContent(data=result_text)], role=message.role
  743. )
  744. prompt_messages.append(prompt_message)
  745. else:
  746. # Get segment group from basic message
  747. if context:
  748. template = message.text.replace("{#context#}", context)
  749. else:
  750. template = message.text
  751. segment_group = variable_pool.convert_template(template)
  752. # Process segments for images
  753. file_contents = []
  754. for segment in segment_group.value:
  755. if isinstance(segment, ArrayFileSegment):
  756. for file in segment.value:
  757. if file.type in {FileType.IMAGE, FileType.VIDEO, FileType.AUDIO, FileType.DOCUMENT}:
  758. file_content = file_manager.to_prompt_message_content(
  759. file, image_detail_config=vision_detail_config
  760. )
  761. file_contents.append(file_content)
  762. elif isinstance(segment, FileSegment):
  763. file = segment.value
  764. if file.type in {FileType.IMAGE, FileType.VIDEO, FileType.AUDIO, FileType.DOCUMENT}:
  765. file_content = file_manager.to_prompt_message_content(
  766. file, image_detail_config=vision_detail_config
  767. )
  768. file_contents.append(file_content)
  769. # Create message with text from all segments
  770. plain_text = segment_group.text
  771. if plain_text:
  772. prompt_message = _combine_message_content_with_role(
  773. contents=[TextPromptMessageContent(data=plain_text)], role=message.role
  774. )
  775. prompt_messages.append(prompt_message)
  776. if file_contents:
  777. # Create message with image contents
  778. prompt_message = _combine_message_content_with_role(contents=file_contents, role=message.role)
  779. prompt_messages.append(prompt_message)
  780. return prompt_messages
  781. def _combine_message_content_with_role(*, contents: Sequence[PromptMessageContent], role: PromptMessageRole):
  782. match role:
  783. case PromptMessageRole.USER:
  784. return UserPromptMessage(content=contents)
  785. case PromptMessageRole.ASSISTANT:
  786. return AssistantPromptMessage(content=contents)
  787. case PromptMessageRole.SYSTEM:
  788. return SystemPromptMessage(content=contents)
  789. raise NotImplementedError(f"Role {role} is not supported")
  790. def _render_jinja2_message(
  791. *,
  792. template: str,
  793. jinjia2_variables: Sequence[VariableSelector],
  794. variable_pool: VariablePool,
  795. ):
  796. if not template:
  797. return ""
  798. jinjia2_inputs = {}
  799. for jinja2_variable in jinjia2_variables:
  800. variable = variable_pool.get(jinja2_variable.value_selector)
  801. jinjia2_inputs[jinja2_variable.variable] = variable.to_object() if variable else ""
  802. code_execute_resp = CodeExecutor.execute_workflow_code_template(
  803. language=CodeLanguage.JINJA2,
  804. code=template,
  805. inputs=jinjia2_inputs,
  806. )
  807. result_text = code_execute_resp["result"]
  808. return result_text
  809. def _calculate_rest_token(
  810. *, prompt_messages: list[PromptMessage], model_config: ModelConfigWithCredentialsEntity
  811. ) -> int:
  812. rest_tokens = 2000
  813. model_context_tokens = model_config.model_schema.model_properties.get(ModelPropertyKey.CONTEXT_SIZE)
  814. if model_context_tokens:
  815. model_instance = ModelInstance(
  816. provider_model_bundle=model_config.provider_model_bundle, model=model_config.model
  817. )
  818. curr_message_tokens = model_instance.get_llm_num_tokens(prompt_messages)
  819. max_tokens = 0
  820. for parameter_rule in model_config.model_schema.parameter_rules:
  821. if parameter_rule.name == "max_tokens" or (
  822. parameter_rule.use_template and parameter_rule.use_template == "max_tokens"
  823. ):
  824. max_tokens = (
  825. model_config.parameters.get(parameter_rule.name)
  826. or model_config.parameters.get(str(parameter_rule.use_template))
  827. or 0
  828. )
  829. rest_tokens = model_context_tokens - max_tokens - curr_message_tokens
  830. rest_tokens = max(rest_tokens, 0)
  831. return rest_tokens
  832. def _handle_memory_chat_mode(
  833. *,
  834. memory: TokenBufferMemory | None,
  835. memory_config: MemoryConfig | None,
  836. model_config: ModelConfigWithCredentialsEntity,
  837. ) -> Sequence[PromptMessage]:
  838. memory_messages: Sequence[PromptMessage] = []
  839. # Get messages from memory for chat model
  840. if memory and memory_config:
  841. rest_tokens = _calculate_rest_token(prompt_messages=[], model_config=model_config)
  842. memory_messages = memory.get_history_prompt_messages(
  843. max_token_limit=rest_tokens,
  844. message_limit=memory_config.window.size if memory_config.window.enabled else None,
  845. )
  846. return memory_messages
  847. def _handle_memory_completion_mode(
  848. *,
  849. memory: TokenBufferMemory | None,
  850. memory_config: MemoryConfig | None,
  851. model_config: ModelConfigWithCredentialsEntity,
  852. ) -> str:
  853. memory_text = ""
  854. # Get history text from memory for completion model
  855. if memory and memory_config:
  856. rest_tokens = _calculate_rest_token(prompt_messages=[], model_config=model_config)
  857. if not memory_config.role_prefix:
  858. raise MemoryRolePrefixRequiredError("Memory role prefix is required for completion model.")
  859. memory_text = memory.get_history_prompt_text(
  860. max_token_limit=rest_tokens,
  861. message_limit=memory_config.window.size if memory_config.window.enabled else None,
  862. human_prefix=memory_config.role_prefix.user,
  863. ai_prefix=memory_config.role_prefix.assistant,
  864. )
  865. return memory_text
  866. def _handle_completion_template(
  867. *,
  868. template: LLMNodeCompletionModelPromptTemplate,
  869. context: Optional[str],
  870. jinja2_variables: Sequence[VariableSelector],
  871. variable_pool: VariablePool,
  872. ) -> Sequence[PromptMessage]:
  873. """Handle completion template processing outside of LLMNode class.
  874. Args:
  875. template: The completion model prompt template
  876. context: Optional context string
  877. jinja2_variables: Variables for jinja2 template rendering
  878. variable_pool: Variable pool for template conversion
  879. Returns:
  880. Sequence of prompt messages
  881. """
  882. prompt_messages = []
  883. if template.edition_type == "jinja2":
  884. result_text = _render_jinja2_message(
  885. template=template.jinja2_text or "",
  886. jinjia2_variables=jinja2_variables,
  887. variable_pool=variable_pool,
  888. )
  889. else:
  890. if context:
  891. template_text = template.text.replace("{#context#}", context)
  892. else:
  893. template_text = template.text
  894. result_text = variable_pool.convert_template(template_text).text
  895. prompt_message = _combine_message_content_with_role(
  896. contents=[TextPromptMessageContent(data=result_text)], role=PromptMessageRole.USER
  897. )
  898. prompt_messages.append(prompt_message)
  899. return prompt_messages