12345678910111213141516171819202122232425262728293031323334353637383940414243444546 |
- from typing import Optional
- from pydantic import BaseModel, Field, model_validator
- from core.model_runtime.entities.provider_entities import ProviderEntity
- from core.plugin.entities.endpoint import EndpointProviderDeclaration
- from core.plugin.entities.plugin import PluginResourceRequirements
- from core.tools.entities.common_entities import I18nObject
- from core.tools.entities.tool_entities import ToolProviderEntity
- class MarketplacePluginDeclaration(BaseModel):
- name: str = Field(..., description="Unique identifier for the plugin within the marketplace")
- org: str = Field(..., description="Organization or developer responsible for creating and maintaining the plugin")
- plugin_id: str = Field(..., description="Globally unique identifier for the plugin across all marketplaces")
- icon: str = Field(..., description="URL or path to the plugin's visual representation")
- label: I18nObject = Field(..., description="Localized display name for the plugin in different languages")
- brief: I18nObject = Field(..., description="Short, localized description of the plugin's functionality")
- resource: PluginResourceRequirements = Field(
- ..., description="Specification of computational resources needed to run the plugin"
- )
- endpoint: Optional[EndpointProviderDeclaration] = Field(
- None, description="Configuration for the plugin's API endpoint, if applicable"
- )
- model: Optional[ProviderEntity] = Field(None, description="Details of the AI model used by the plugin, if any")
- tool: Optional[ToolProviderEntity] = Field(
- None, description="Information about the tool functionality provided by the plugin, if any"
- )
- latest_version: str = Field(
- ..., description="Most recent version number of the plugin available in the marketplace"
- )
- latest_package_identifier: str = Field(
- ..., description="Unique identifier for the latest package release of the plugin"
- )
- @model_validator(mode="before")
- @classmethod
- def transform_declaration(cls, data: dict):
- if "endpoint" in data and not data["endpoint"]:
- del data["endpoint"]
- if "model" in data and not data["model"]:
- del data["model"]
- if "tool" in data and not data["tool"]:
- del data["tool"]
- return data
|