batch_create_segment_to_index_task.py 4.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111
  1. import datetime
  2. import logging
  3. import time
  4. import uuid
  5. import click
  6. from celery import shared_task # type: ignore
  7. from sqlalchemy import func
  8. from core.model_manager import ModelManager
  9. from core.model_runtime.entities.model_entities import ModelType
  10. from extensions.ext_database import db
  11. from extensions.ext_redis import redis_client
  12. from libs import helper
  13. from models.dataset import Dataset, Document, DocumentSegment
  14. from services.vector_service import VectorService
  15. @shared_task(queue="dataset")
  16. def batch_create_segment_to_index_task(
  17. job_id: str, content: list, dataset_id: str, document_id: str, tenant_id: str, user_id: str
  18. ):
  19. """
  20. Async batch create segment to index
  21. :param job_id:
  22. :param content:
  23. :param dataset_id:
  24. :param document_id:
  25. :param tenant_id:
  26. :param user_id:
  27. Usage: batch_create_segment_to_index_task.delay(segment_id)
  28. """
  29. logging.info(click.style("Start batch create segment jobId: {}".format(job_id), fg="green"))
  30. start_at = time.perf_counter()
  31. indexing_cache_key = "segment_batch_import_{}".format(job_id)
  32. try:
  33. dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
  34. if not dataset:
  35. raise ValueError("Dataset not exist.")
  36. dataset_document = db.session.query(Document).filter(Document.id == document_id).first()
  37. if not dataset_document:
  38. raise ValueError("Document not exist.")
  39. if not dataset_document.enabled or dataset_document.archived or dataset_document.indexing_status != "completed":
  40. raise ValueError("Document is not available.")
  41. document_segments = []
  42. embedding_model = None
  43. if dataset.indexing_technique == "high_quality":
  44. model_manager = ModelManager()
  45. embedding_model = model_manager.get_model_instance(
  46. tenant_id=dataset.tenant_id,
  47. provider=dataset.embedding_model_provider,
  48. model_type=ModelType.TEXT_EMBEDDING,
  49. model=dataset.embedding_model,
  50. )
  51. word_count_change = 0
  52. if embedding_model:
  53. tokens_list = embedding_model.get_text_embedding_num_tokens(
  54. texts=[segment["content"] for segment in content]
  55. )
  56. else:
  57. tokens_list = [0] * len(content)
  58. for segment, tokens in zip(content, tokens_list):
  59. content = segment["content"]
  60. doc_id = str(uuid.uuid4())
  61. segment_hash = helper.generate_text_hash(content) # type: ignore
  62. max_position = (
  63. db.session.query(func.max(DocumentSegment.position))
  64. .filter(DocumentSegment.document_id == dataset_document.id)
  65. .scalar()
  66. )
  67. segment_document = DocumentSegment(
  68. tenant_id=tenant_id,
  69. dataset_id=dataset_id,
  70. document_id=document_id,
  71. index_node_id=doc_id,
  72. index_node_hash=segment_hash,
  73. position=max_position + 1 if max_position else 1,
  74. content=content,
  75. word_count=len(content),
  76. tokens=tokens,
  77. created_by=user_id,
  78. indexing_at=datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
  79. status="completed",
  80. completed_at=datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
  81. )
  82. if dataset_document.doc_form == "qa_model":
  83. segment_document.answer = segment["answer"]
  84. segment_document.word_count += len(segment["answer"])
  85. word_count_change += segment_document.word_count
  86. db.session.add(segment_document)
  87. document_segments.append(segment_document)
  88. # update document word count
  89. dataset_document.word_count += word_count_change
  90. db.session.add(dataset_document)
  91. # add index to db
  92. VectorService.create_segments_vector(None, document_segments, dataset, dataset_document.doc_form)
  93. db.session.commit()
  94. redis_client.setex(indexing_cache_key, 600, "completed")
  95. end_at = time.perf_counter()
  96. logging.info(
  97. click.style("Segment batch created job: {} latency: {}".format(job_id, end_at - start_at), fg="green")
  98. )
  99. except Exception:
  100. logging.exception("Segments batch created index failed")
  101. redis_client.setex(indexing_cache_key, 600, "error")