web_reader_tool.py 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441
  1. import hashlib
  2. import json
  3. import os
  4. import re
  5. import site
  6. import subprocess
  7. import tempfile
  8. import unicodedata
  9. from contextlib import contextmanager
  10. from typing import Type
  11. import requests
  12. from bs4 import BeautifulSoup, NavigableString, Comment, CData
  13. from langchain.chains import RefineDocumentsChain
  14. from langchain.chains.summarize import refine_prompts
  15. from langchain.schema import Document
  16. from langchain.text_splitter import RecursiveCharacterTextSplitter
  17. from langchain.tools.base import BaseTool
  18. from newspaper import Article
  19. from pydantic import BaseModel, Field
  20. from regex import regex
  21. from core.chain.llm_chain import LLMChain
  22. from core.data_loader import file_extractor
  23. from core.data_loader.file_extractor import FileExtractor
  24. from core.model_providers.models.llm.base import BaseLLM
  25. FULL_TEMPLATE = """
  26. TITLE: {title}
  27. AUTHORS: {authors}
  28. PUBLISH DATE: {publish_date}
  29. TOP_IMAGE_URL: {top_image}
  30. TEXT:
  31. {text}
  32. """
  33. class WebReaderToolInput(BaseModel):
  34. url: str = Field(..., description="URL of the website to read")
  35. summary: bool = Field(
  36. default=False,
  37. description="When the user's question requires extracting the summarizing content of the webpage, "
  38. "set it to true."
  39. )
  40. cursor: int = Field(
  41. default=0,
  42. description="Start reading from this character."
  43. "Use when the first response was truncated"
  44. "and you want to continue reading the page."
  45. "The value cannot exceed 24000.",
  46. )
  47. class WebReaderTool(BaseTool):
  48. """Reader tool for getting website title and contents. Gives more control than SimpleReaderTool."""
  49. name: str = "web_reader"
  50. args_schema: Type[BaseModel] = WebReaderToolInput
  51. description: str = "use this to read a website. " \
  52. "If you can answer the question based on the information provided, " \
  53. "there is no need to use."
  54. page_contents: str = None
  55. url: str = None
  56. max_chunk_length: int = 4000
  57. summary_chunk_tokens: int = 4000
  58. summary_chunk_overlap: int = 0
  59. summary_separators: list[str] = ["\n\n", "。", ".", " ", ""]
  60. continue_reading: bool = True
  61. model_instance: BaseLLM = None
  62. def _run(self, url: str, summary: bool = False, cursor: int = 0) -> str:
  63. try:
  64. if not self.page_contents or self.url != url:
  65. page_contents = get_url(url)
  66. self.page_contents = page_contents
  67. self.url = url
  68. else:
  69. page_contents = self.page_contents
  70. except Exception as e:
  71. return f'Read this website failed, caused by: {str(e)}.'
  72. if summary and self.model_instance:
  73. character_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
  74. chunk_size=self.summary_chunk_tokens,
  75. chunk_overlap=self.summary_chunk_overlap,
  76. separators=self.summary_separators
  77. )
  78. texts = character_splitter.split_text(page_contents)
  79. docs = [Document(page_content=t) for t in texts]
  80. if len(docs) == 0 or docs[0].page_content.endswith('TEXT:'):
  81. return "No content found."
  82. # only use first 5 docs
  83. if len(docs) > 5:
  84. docs = docs[:5]
  85. chain = self.get_summary_chain()
  86. try:
  87. page_contents = chain.run(docs)
  88. except Exception as e:
  89. return f'Read this website failed, caused by: {str(e)}.'
  90. else:
  91. page_contents = page_result(page_contents, cursor, self.max_chunk_length)
  92. if self.continue_reading and len(page_contents) >= self.max_chunk_length:
  93. page_contents += f"\nPAGE WAS TRUNCATED. IF YOU FIND INFORMATION THAT CAN ANSWER QUESTION " \
  94. f"THEN DIRECT ANSWER AND STOP INVOKING web_reader TOOL, OTHERWISE USE " \
  95. f"CURSOR={cursor+len(page_contents)} TO CONTINUE READING."
  96. return page_contents
  97. async def _arun(self, url: str) -> str:
  98. raise NotImplementedError
  99. def get_summary_chain(self) -> RefineDocumentsChain:
  100. initial_chain = LLMChain(
  101. model_instance=self.model_instance,
  102. prompt=refine_prompts.PROMPT
  103. )
  104. refine_chain = LLMChain(
  105. model_instance=self.model_instance,
  106. prompt=refine_prompts.REFINE_PROMPT
  107. )
  108. return RefineDocumentsChain(
  109. initial_llm_chain=initial_chain,
  110. refine_llm_chain=refine_chain,
  111. document_variable_name="text",
  112. initial_response_name="existing_answer",
  113. callbacks=self.callbacks
  114. )
  115. def page_result(text: str, cursor: int, max_length: int) -> str:
  116. """Page through `text` and return a substring of `max_length` characters starting from `cursor`."""
  117. return text[cursor: cursor + max_length]
  118. def get_url(url: str) -> str:
  119. """Fetch URL and return the contents as a string."""
  120. headers = {
  121. "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36"
  122. }
  123. supported_content_types = file_extractor.SUPPORT_URL_CONTENT_TYPES + ["text/html"]
  124. head_response = requests.head(url, headers=headers, allow_redirects=True, timeout=(5, 10))
  125. if head_response.status_code != 200:
  126. return "URL returned status code {}.".format(head_response.status_code)
  127. # check content-type
  128. main_content_type = head_response.headers.get('Content-Type').split(';')[0].strip()
  129. if main_content_type not in supported_content_types:
  130. return "Unsupported content-type [{}] of URL.".format(main_content_type)
  131. if main_content_type in file_extractor.SUPPORT_URL_CONTENT_TYPES:
  132. return FileExtractor.load_from_url(url, return_text=True)
  133. response = requests.get(url, headers=headers, allow_redirects=True, timeout=(5, 30))
  134. a = extract_using_readabilipy(response.text)
  135. if not a['plain_text'] or not a['plain_text'].strip():
  136. return get_url_from_newspaper3k(url)
  137. res = FULL_TEMPLATE.format(
  138. title=a['title'],
  139. authors=a['byline'],
  140. publish_date=a['date'],
  141. top_image="",
  142. text=a['plain_text'] if a['plain_text'] else "",
  143. )
  144. return res
  145. def get_url_from_newspaper3k(url: str) -> str:
  146. a = Article(url)
  147. a.download()
  148. a.parse()
  149. res = FULL_TEMPLATE.format(
  150. title=a.title,
  151. authors=a.authors,
  152. publish_date=a.publish_date,
  153. top_image=a.top_image,
  154. text=a.text,
  155. )
  156. return res
  157. def extract_using_readabilipy(html):
  158. with tempfile.NamedTemporaryFile(delete=False, mode='w+') as f_html:
  159. f_html.write(html)
  160. f_html.close()
  161. html_path = f_html.name
  162. # Call Mozilla's Readability.js Readability.parse() function via node, writing output to a temporary file
  163. article_json_path = html_path + ".json"
  164. jsdir = os.path.join(find_module_path('readabilipy'), 'javascript')
  165. with chdir(jsdir):
  166. subprocess.check_call(["node", "ExtractArticle.js", "-i", html_path, "-o", article_json_path])
  167. # Read output of call to Readability.parse() from JSON file and return as Python dictionary
  168. with open(article_json_path, "r", encoding="utf-8") as json_file:
  169. input_json = json.loads(json_file.read())
  170. # Deleting files after processing
  171. os.unlink(article_json_path)
  172. os.unlink(html_path)
  173. article_json = {
  174. "title": None,
  175. "byline": None,
  176. "date": None,
  177. "content": None,
  178. "plain_content": None,
  179. "plain_text": None
  180. }
  181. # Populate article fields from readability fields where present
  182. if input_json:
  183. if "title" in input_json and input_json["title"]:
  184. article_json["title"] = input_json["title"]
  185. if "byline" in input_json and input_json["byline"]:
  186. article_json["byline"] = input_json["byline"]
  187. if "date" in input_json and input_json["date"]:
  188. article_json["date"] = input_json["date"]
  189. if "content" in input_json and input_json["content"]:
  190. article_json["content"] = input_json["content"]
  191. article_json["plain_content"] = plain_content(article_json["content"], False, False)
  192. article_json["plain_text"] = extract_text_blocks_as_plain_text(article_json["plain_content"])
  193. if "textContent" in input_json and input_json["textContent"]:
  194. article_json["plain_text"] = input_json["textContent"]
  195. article_json["plain_text"] = re.sub(r'\n\s*\n', '\n', article_json["plain_text"])
  196. return article_json
  197. def find_module_path(module_name):
  198. for package_path in site.getsitepackages():
  199. potential_path = os.path.join(package_path, module_name)
  200. if os.path.exists(potential_path):
  201. return potential_path
  202. return None
  203. @contextmanager
  204. def chdir(path):
  205. """Change directory in context and return to original on exit"""
  206. # From https://stackoverflow.com/a/37996581, couldn't find a built-in
  207. original_path = os.getcwd()
  208. os.chdir(path)
  209. try:
  210. yield
  211. finally:
  212. os.chdir(original_path)
  213. def extract_text_blocks_as_plain_text(paragraph_html):
  214. # Load article as DOM
  215. soup = BeautifulSoup(paragraph_html, 'html.parser')
  216. # Select all lists
  217. list_elements = soup.find_all(['ul', 'ol'])
  218. # Prefix text in all list items with "* " and make lists paragraphs
  219. for list_element in list_elements:
  220. plain_items = "".join(list(filter(None, [plain_text_leaf_node(li)["text"] for li in list_element.find_all('li')])))
  221. list_element.string = plain_items
  222. list_element.name = "p"
  223. # Select all text blocks
  224. text_blocks = [s.parent for s in soup.find_all(string=True)]
  225. text_blocks = [plain_text_leaf_node(block) for block in text_blocks]
  226. # Drop empty paragraphs
  227. text_blocks = list(filter(lambda p: p["text"] is not None, text_blocks))
  228. return text_blocks
  229. def plain_text_leaf_node(element):
  230. # Extract all text, stripped of any child HTML elements and normalise it
  231. plain_text = normalise_text(element.get_text())
  232. if plain_text != "" and element.name == "li":
  233. plain_text = "* {}, ".format(plain_text)
  234. if plain_text == "":
  235. plain_text = None
  236. if "data-node-index" in element.attrs:
  237. plain = {"node_index": element["data-node-index"], "text": plain_text}
  238. else:
  239. plain = {"text": plain_text}
  240. return plain
  241. def plain_content(readability_content, content_digests, node_indexes):
  242. # Load article as DOM
  243. soup = BeautifulSoup(readability_content, 'html.parser')
  244. # Make all elements plain
  245. elements = plain_elements(soup.contents, content_digests, node_indexes)
  246. if node_indexes:
  247. # Add node index attributes to nodes
  248. elements = [add_node_indexes(element) for element in elements]
  249. # Replace article contents with plain elements
  250. soup.contents = elements
  251. return str(soup)
  252. def plain_elements(elements, content_digests, node_indexes):
  253. # Get plain content versions of all elements
  254. elements = [plain_element(element, content_digests, node_indexes)
  255. for element in elements]
  256. if content_digests:
  257. # Add content digest attribute to nodes
  258. elements = [add_content_digest(element) for element in elements]
  259. return elements
  260. def plain_element(element, content_digests, node_indexes):
  261. # For lists, we make each item plain text
  262. if is_leaf(element):
  263. # For leaf node elements, extract the text content, discarding any HTML tags
  264. # 1. Get element contents as text
  265. plain_text = element.get_text()
  266. # 2. Normalise the extracted text string to a canonical representation
  267. plain_text = normalise_text(plain_text)
  268. # 3. Update element content to be plain text
  269. element.string = plain_text
  270. elif is_text(element):
  271. if is_non_printing(element):
  272. # The simplified HTML may have come from Readability.js so might
  273. # have non-printing text (e.g. Comment or CData). In this case, we
  274. # keep the structure, but ensure that the string is empty.
  275. element = type(element)("")
  276. else:
  277. plain_text = element.string
  278. plain_text = normalise_text(plain_text)
  279. element = type(element)(plain_text)
  280. else:
  281. # If not a leaf node or leaf type call recursively on child nodes, replacing
  282. element.contents = plain_elements(element.contents, content_digests, node_indexes)
  283. return element
  284. def add_node_indexes(element, node_index="0"):
  285. # Can't add attributes to string types
  286. if is_text(element):
  287. return element
  288. # Add index to current element
  289. element["data-node-index"] = node_index
  290. # Add index to child elements
  291. for local_idx, child in enumerate(
  292. [c for c in element.contents if not is_text(c)], start=1):
  293. # Can't add attributes to leaf string types
  294. child_index = "{stem}.{local}".format(
  295. stem=node_index, local=local_idx)
  296. add_node_indexes(child, node_index=child_index)
  297. return element
  298. def normalise_text(text):
  299. """Normalise unicode and whitespace."""
  300. # Normalise unicode first to try and standardise whitespace characters as much as possible before normalising them
  301. text = strip_control_characters(text)
  302. text = normalise_unicode(text)
  303. text = normalise_whitespace(text)
  304. return text
  305. def strip_control_characters(text):
  306. """Strip out unicode control characters which might break the parsing."""
  307. # Unicode control characters
  308. # [Cc]: Other, Control [includes new lines]
  309. # [Cf]: Other, Format
  310. # [Cn]: Other, Not Assigned
  311. # [Co]: Other, Private Use
  312. # [Cs]: Other, Surrogate
  313. control_chars = set(['Cc', 'Cf', 'Cn', 'Co', 'Cs'])
  314. retained_chars = ['\t', '\n', '\r', '\f']
  315. # Remove non-printing control characters
  316. return "".join(["" if (unicodedata.category(char) in control_chars) and (char not in retained_chars) else char for char in text])
  317. def normalise_unicode(text):
  318. """Normalise unicode such that things that are visually equivalent map to the same unicode string where possible."""
  319. normal_form = "NFKC"
  320. text = unicodedata.normalize(normal_form, text)
  321. return text
  322. def normalise_whitespace(text):
  323. """Replace runs of whitespace characters with a single space as this is what happens when HTML text is displayed."""
  324. text = regex.sub(r"\s+", " ", text)
  325. # Remove leading and trailing whitespace
  326. text = text.strip()
  327. return text
  328. def is_leaf(element):
  329. return (element.name in ['p', 'li'])
  330. def is_text(element):
  331. return isinstance(element, NavigableString)
  332. def is_non_printing(element):
  333. return any(isinstance(element, _e) for _e in [Comment, CData])
  334. def add_content_digest(element):
  335. if not is_text(element):
  336. element["data-content-digest"] = content_digest(element)
  337. return element
  338. def content_digest(element):
  339. if is_text(element):
  340. # Hash
  341. trimmed_string = element.string.strip()
  342. if trimmed_string == "":
  343. digest = ""
  344. else:
  345. digest = hashlib.sha256(trimmed_string.encode('utf-8')).hexdigest()
  346. else:
  347. contents = element.contents
  348. num_contents = len(contents)
  349. if num_contents == 0:
  350. # No hash when no child elements exist
  351. digest = ""
  352. elif num_contents == 1:
  353. # If single child, use digest of child
  354. digest = content_digest(contents[0])
  355. else:
  356. # Build content digest from the "non-empty" digests of child nodes
  357. digest = hashlib.sha256()
  358. child_digests = list(
  359. filter(lambda x: x != "", [content_digest(content) for content in contents]))
  360. for child in child_digests:
  361. digest.update(child.encode('utf-8'))
  362. digest = digest.hexdigest()
  363. return digest