| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131 | 
							- import logging
 
- import time
 
- from typing import List
 
- import numpy as np
 
- from llama_index.data_structs.node_v2 import NodeWithScore
 
- from llama_index.indices.query.schema import QueryBundle
 
- from llama_index.indices.vector_store import GPTVectorStoreIndexQuery
 
- from sklearn.manifold import TSNE
 
- from core.docstore.empty_docstore import EmptyDocumentStore
 
- from core.index.vector_index import VectorIndex
 
- from extensions.ext_database import db
 
- from models.account import Account
 
- from models.dataset import Dataset, DocumentSegment, DatasetQuery
 
- from services.errors.index import IndexNotInitializedError
 
- class HitTestingService:
 
-     @classmethod
 
-     def retrieve(cls, dataset: Dataset, query: str, account: Account, limit: int = 10) -> dict:
 
-         index = VectorIndex(dataset=dataset).query_index
 
-         if not index:
 
-             raise IndexNotInitializedError()
 
-         index_query = GPTVectorStoreIndexQuery(
 
-             index_struct=index.index_struct,
 
-             service_context=index.service_context,
 
-             vector_store=index.query_context.get('vector_store'),
 
-             docstore=EmptyDocumentStore(),
 
-             response_synthesizer=None,
 
-             similarity_top_k=limit
 
-         )
 
-         query_bundle = QueryBundle(
 
-             query_str=query,
 
-             custom_embedding_strs=[query],
 
-         )
 
-         query_bundle.embedding = index.service_context.embed_model.get_agg_embedding_from_queries(
 
-             query_bundle.embedding_strs
 
-         )
 
-         start = time.perf_counter()
 
-         nodes = index_query.retrieve(query_bundle=query_bundle)
 
-         end = time.perf_counter()
 
-         logging.debug(f"Hit testing retrieve in {end - start:0.4f} seconds")
 
-         dataset_query = DatasetQuery(
 
-             dataset_id=dataset.id,
 
-             content=query,
 
-             source='hit_testing',
 
-             created_by_role='account',
 
-             created_by=account.id
 
-         )
 
-         db.session.add(dataset_query)
 
-         db.session.commit()
 
-         return cls.compact_retrieve_response(dataset, query_bundle, nodes)
 
-     @classmethod
 
-     def compact_retrieve_response(cls, dataset: Dataset, query_bundle: QueryBundle, nodes: List[NodeWithScore]):
 
-         embeddings = [
 
-             query_bundle.embedding
 
-         ]
 
-         for node in nodes:
 
-             embeddings.append(node.node.embedding)
 
-         tsne_position_data = cls.get_tsne_positions_from_embeddings(embeddings)
 
-         query_position = tsne_position_data.pop(0)
 
-         i = 0
 
-         records = []
 
-         for node in nodes:
 
-             index_node_id = node.node.doc_id
 
-             segment = db.session.query(DocumentSegment).filter(
 
-                 DocumentSegment.dataset_id == dataset.id,
 
-                 DocumentSegment.enabled == True,
 
-                 DocumentSegment.status == 'completed',
 
-                 DocumentSegment.index_node_id == index_node_id
 
-             ).first()
 
-             if not segment:
 
-                 i += 1
 
-                 continue
 
-             record = {
 
-                 "segment": segment,
 
-                 "score": node.score,
 
-                 "tsne_position": tsne_position_data[i]
 
-             }
 
-             records.append(record)
 
-             i += 1
 
-         return {
 
-             "query": {
 
-                 "content": query_bundle.query_str,
 
-                 "tsne_position": query_position,
 
-             },
 
-             "records": records
 
-         }
 
-     @classmethod
 
-     def get_tsne_positions_from_embeddings(cls, embeddings: list):
 
-         embedding_length = len(embeddings)
 
-         if embedding_length <= 1:
 
-             return [{'x': 0, 'y': 0}]
 
-         concatenate_data = np.array(embeddings).reshape(embedding_length, -1)
 
-         # concatenate_data = np.concatenate(embeddings)
 
-         perplexity = embedding_length / 2 + 1
 
-         if perplexity >= embedding_length:
 
-             perplexity = max(embedding_length - 1, 1)
 
-         tsne = TSNE(n_components=2, perplexity=perplexity, early_exaggeration=12.0)
 
-         data_tsne = tsne.fit_transform(concatenate_data)
 
-         tsne_position_data = []
 
-         for i in range(len(data_tsne)):
 
-             tsne_position_data.append({'x': float(data_tsne[i][0]), 'y': float(data_tsne[i][1])})
 
-         return tsne_position_data
 
 
  |