| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188 | import jsonimport osimport timeimport uuidfrom collections.abc import Generatorfrom unittest.mock import MagicMockimport pytestfrom core.app.entities.app_invoke_entities import InvokeFromfrom core.workflow.entities.variable_pool import VariablePoolfrom core.workflow.enums import SystemVariableKeyfrom core.workflow.graph_engine.entities.graph import Graphfrom core.workflow.graph_engine.entities.graph_init_params import GraphInitParamsfrom core.workflow.graph_engine.entities.graph_runtime_state import GraphRuntimeStatefrom core.workflow.nodes.event import RunCompletedEventfrom core.workflow.nodes.llm.node import LLMNodefrom extensions.ext_database import dbfrom models.enums import UserFromfrom models.workflow import WorkflowNodeExecutionStatus, WorkflowTypefrom tests.integration_tests.workflow.nodes.__mock.model import get_mocked_fetch_model_config"""FOR MOCK FIXTURES, DO NOT REMOVE"""from tests.integration_tests.model_runtime.__mock.plugin_daemon import setup_model_mockfrom tests.integration_tests.workflow.nodes.__mock.code_executor import setup_code_executor_mockdef init_llm_node(config: dict) -> LLMNode:    graph_config = {        "edges": [            {                "id": "start-source-next-target",                "source": "start",                "target": "llm",            },        ],        "nodes": [{"data": {"type": "start"}, "id": "start"}, config],    }    graph = Graph.init(graph_config=graph_config)    init_params = GraphInitParams(        tenant_id="1",        app_id="1",        workflow_type=WorkflowType.WORKFLOW,        workflow_id="1",        graph_config=graph_config,        user_id="1",        user_from=UserFrom.ACCOUNT,        invoke_from=InvokeFrom.DEBUGGER,        call_depth=0,    )    # construct variable pool    variable_pool = VariablePool(        system_variables={            SystemVariableKey.QUERY: "what's the weather today?",            SystemVariableKey.FILES: [],            SystemVariableKey.CONVERSATION_ID: "abababa",            SystemVariableKey.USER_ID: "aaa",        },        user_inputs={},        environment_variables=[],        conversation_variables=[],    )    variable_pool.add(["abc", "output"], "sunny")    node = LLMNode(        id=str(uuid.uuid4()),        graph_init_params=init_params,        graph=graph,        graph_runtime_state=GraphRuntimeState(variable_pool=variable_pool, start_at=time.perf_counter()),        config=config,    )    return nodedef test_execute_llm(setup_model_mock):    node = init_llm_node(        config={            "id": "llm",            "data": {                "title": "123",                "type": "llm",                "model": {                    "provider": "langgenius/openai/openai",                    "name": "gpt-3.5-turbo",                    "mode": "chat",                    "completion_params": {},                },                "prompt_template": [                    {"role": "system", "text": "you are a helpful assistant.\ntoday's weather is {{#abc.output#}}."},                    {"role": "user", "text": "{{#sys.query#}}"},                ],                "memory": None,                "context": {"enabled": False},                "vision": {"enabled": False},            },        },    )    credentials = {"openai_api_key": os.environ.get("OPENAI_API_KEY")}    # Mock db.session.close()    db.session.close = MagicMock()    node._fetch_model_config = get_mocked_fetch_model_config(        provider="langgenius/openai/openai",        model="gpt-3.5-turbo",        mode="chat",        credentials=credentials,    )    # execute node    result = node._run()    assert isinstance(result, Generator)    for item in result:        if isinstance(item, RunCompletedEvent):            assert item.run_result.status == WorkflowNodeExecutionStatus.SUCCEEDED            assert item.run_result.process_data is not None            assert item.run_result.outputs is not None            assert item.run_result.outputs.get("text") is not None            assert item.run_result.outputs.get("usage", {})["total_tokens"] > 0@pytest.mark.parametrize("setup_code_executor_mock", [["none"]], indirect=True)def test_execute_llm_with_jinja2(setup_code_executor_mock, setup_model_mock):    """    Test execute LLM node with jinja2    """    node = init_llm_node(        config={            "id": "llm",            "data": {                "title": "123",                "type": "llm",                "model": {"provider": "openai", "name": "gpt-3.5-turbo", "mode": "chat", "completion_params": {}},                "prompt_config": {                    "jinja2_variables": [                        {"variable": "sys_query", "value_selector": ["sys", "query"]},                        {"variable": "output", "value_selector": ["abc", "output"]},                    ]                },                "prompt_template": [                    {                        "role": "system",                        "text": "you are a helpful assistant.\ntoday's weather is {{#abc.output#}}",                        "jinja2_text": "you are a helpful assistant.\ntoday's weather is {{output}}.",                        "edition_type": "jinja2",                    },                    {                        "role": "user",                        "text": "{{#sys.query#}}",                        "jinja2_text": "{{sys_query}}",                        "edition_type": "basic",                    },                ],                "memory": None,                "context": {"enabled": False},                "vision": {"enabled": False},            },        },    )    credentials = {"openai_api_key": os.environ.get("OPENAI_API_KEY")}    # Mock db.session.close()    db.session.close = MagicMock()    node._fetch_model_config = get_mocked_fetch_model_config(        provider="langgenius/openai/openai",        model="gpt-3.5-turbo",        mode="chat",        credentials=credentials,    )    # execute node    result = node._run()    for item in result:        if isinstance(item, RunCompletedEvent):            assert item.run_result.status == WorkflowNodeExecutionStatus.SUCCEEDED            assert item.run_result.process_data is not None            assert "sunny" in json.dumps(item.run_result.process_data)            assert "what's the weather today?" in json.dumps(item.run_result.process_data)
 |