| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467 | 
							- import datetime
 
- import json
 
- import re
 
- import tempfile
 
- import time
 
- from pathlib import Path
 
- from typing import Optional, List
 
- from langchain.text_splitter import RecursiveCharacterTextSplitter
 
- from llama_index import SimpleDirectoryReader
 
- from llama_index.data_structs import Node
 
- from llama_index.data_structs.node_v2 import DocumentRelationship
 
- from llama_index.node_parser import SimpleNodeParser, NodeParser
 
- from llama_index.readers.file.base import DEFAULT_FILE_EXTRACTOR
 
- from core.docstore.dataset_docstore import DatesetDocumentStore
 
- from core.index.keyword_table_index import KeywordTableIndex
 
- from core.index.readers.html_parser import HTMLParser
 
- from core.index.readers.markdown_parser import MarkdownParser
 
- from core.index.readers.pdf_parser import PDFParser
 
- from core.index.spiltter.fixed_text_splitter import FixedRecursiveCharacterTextSplitter
 
- from core.index.vector_index import VectorIndex
 
- from core.llm.token_calculator import TokenCalculator
 
- from extensions.ext_database import db
 
- from extensions.ext_redis import redis_client
 
- from extensions.ext_storage import storage
 
- from models.dataset import Document, Dataset, DocumentSegment, DatasetProcessRule
 
- from models.model import UploadFile
 
- class IndexingRunner:
 
-     def __init__(self, embedding_model_name: str = "text-embedding-ada-002"):
 
-         self.storage = storage
 
-         self.embedding_model_name = embedding_model_name
 
-     def run(self, document: Document):
 
-         """Run the indexing process."""
 
-         # get dataset
 
-         dataset = Dataset.query.filter_by(
 
-             id=document.dataset_id
 
-         ).first()
 
-         if not dataset:
 
-             raise ValueError("no dataset found")
 
-         # load file
 
-         text_docs = self._load_data(document)
 
-         # get the process rule
 
-         processing_rule = db.session.query(DatasetProcessRule). \
 
-             filter(DatasetProcessRule.id == document.dataset_process_rule_id). \
 
-             first()
 
-         # get node parser for splitting
 
-         node_parser = self._get_node_parser(processing_rule)
 
-         # split to nodes
 
-         nodes = self._step_split(
 
-             text_docs=text_docs,
 
-             node_parser=node_parser,
 
-             dataset=dataset,
 
-             document=document,
 
-             processing_rule=processing_rule
 
-         )
 
-         # build index
 
-         self._build_index(
 
-             dataset=dataset,
 
-             document=document,
 
-             nodes=nodes
 
-         )
 
-     def run_in_splitting_status(self, document: Document):
 
-         """Run the indexing process when the index_status is splitting."""
 
-         # get dataset
 
-         dataset = Dataset.query.filter_by(
 
-             id=document.dataset_id
 
-         ).first()
 
-         if not dataset:
 
-             raise ValueError("no dataset found")
 
-         # get exist document_segment list and delete
 
-         document_segments = DocumentSegment.query.filter_by(
 
-             dataset_id=dataset.id,
 
-             document_id=document.id
 
-         ).all()
 
-         db.session.delete(document_segments)
 
-         db.session.commit()
 
-         # load file
 
-         text_docs = self._load_data(document)
 
-         # get the process rule
 
-         processing_rule = db.session.query(DatasetProcessRule). \
 
-             filter(DatasetProcessRule.id == document.dataset_process_rule_id). \
 
-             first()
 
-         # get node parser for splitting
 
-         node_parser = self._get_node_parser(processing_rule)
 
-         # split to nodes
 
-         nodes = self._step_split(
 
-             text_docs=text_docs,
 
-             node_parser=node_parser,
 
-             dataset=dataset,
 
-             document=document,
 
-             processing_rule=processing_rule
 
-         )
 
-         # build index
 
-         self._build_index(
 
-             dataset=dataset,
 
-             document=document,
 
-             nodes=nodes
 
-         )
 
-     def run_in_indexing_status(self, document: Document):
 
-         """Run the indexing process when the index_status is indexing."""
 
-         # get dataset
 
-         dataset = Dataset.query.filter_by(
 
-             id=document.dataset_id
 
-         ).first()
 
-         if not dataset:
 
-             raise ValueError("no dataset found")
 
-         # get exist document_segment list and delete
 
-         document_segments = DocumentSegment.query.filter_by(
 
-             dataset_id=dataset.id,
 
-             document_id=document.id
 
-         ).all()
 
-         nodes = []
 
-         if document_segments:
 
-             for document_segment in document_segments:
 
-                 # transform segment to node
 
-                 if document_segment.status != "completed":
 
-                     relationships = {
 
-                         DocumentRelationship.SOURCE: document_segment.document_id,
 
-                     }
 
-                     previous_segment = document_segment.previous_segment
 
-                     if previous_segment:
 
-                         relationships[DocumentRelationship.PREVIOUS] = previous_segment.index_node_id
 
-                     next_segment = document_segment.next_segment
 
-                     if next_segment:
 
-                         relationships[DocumentRelationship.NEXT] = next_segment.index_node_id
 
-                     node = Node(
 
-                         doc_id=document_segment.index_node_id,
 
-                         doc_hash=document_segment.index_node_hash,
 
-                         text=document_segment.content,
 
-                         extra_info=None,
 
-                         node_info=None,
 
-                         relationships=relationships
 
-                     )
 
-                     nodes.append(node)
 
-         # build index
 
-         self._build_index(
 
-             dataset=dataset,
 
-             document=document,
 
-             nodes=nodes
 
-         )
 
-     def indexing_estimate(self, file_detail: UploadFile, tmp_processing_rule: dict) -> dict:
 
-         """
 
-         Estimate the indexing for the document.
 
-         """
 
-         # load data from file
 
-         text_docs = self._load_data_from_file(file_detail)
 
-         processing_rule = DatasetProcessRule(
 
-             mode=tmp_processing_rule["mode"],
 
-             rules=json.dumps(tmp_processing_rule["rules"])
 
-         )
 
-         # get node parser for splitting
 
-         node_parser = self._get_node_parser(processing_rule)
 
-         # split to nodes
 
-         nodes = self._split_to_nodes(
 
-             text_docs=text_docs,
 
-             node_parser=node_parser,
 
-             processing_rule=processing_rule
 
-         )
 
-         tokens = 0
 
-         preview_texts = []
 
-         for node in nodes:
 
-             if len(preview_texts) < 5:
 
-                 preview_texts.append(node.get_text())
 
-             tokens += TokenCalculator.get_num_tokens(self.embedding_model_name, node.get_text())
 
-         return {
 
-             "total_segments": len(nodes),
 
-             "tokens": tokens,
 
-             "total_price": '{:f}'.format(TokenCalculator.get_token_price(self.embedding_model_name, tokens)),
 
-             "currency": TokenCalculator.get_currency(self.embedding_model_name),
 
-             "preview": preview_texts
 
-         }
 
-     def _load_data(self, document: Document) -> List[Document]:
 
-         # load file
 
-         if document.data_source_type != "upload_file":
 
-             return []
 
-         data_source_info = document.data_source_info_dict
 
-         if not data_source_info or 'upload_file_id' not in data_source_info:
 
-             raise ValueError("no upload file found")
 
-         file_detail = db.session.query(UploadFile). \
 
-             filter(UploadFile.id == data_source_info['upload_file_id']). \
 
-             one_or_none()
 
-         text_docs = self._load_data_from_file(file_detail)
 
-         # update document status to splitting
 
-         self._update_document_index_status(
 
-             document_id=document.id,
 
-             after_indexing_status="splitting",
 
-             extra_update_params={
 
-                 Document.file_id: file_detail.id,
 
-                 Document.word_count: sum([len(text_doc.text) for text_doc in text_docs]),
 
-                 Document.parsing_completed_at: datetime.datetime.utcnow()
 
-             }
 
-         )
 
-         # replace doc id to document model id
 
-         for text_doc in text_docs:
 
-             # remove invalid symbol
 
-             text_doc.text = self.filter_string(text_doc.get_text())
 
-             text_doc.doc_id = document.id
 
-         return text_docs
 
-     def filter_string(self, text):
 
-         pattern = re.compile('[\x00-\x08\x0B\x0C\x0E-\x1F\x7F\x80-\xFF]')
 
-         return pattern.sub('', text)
 
-     def _load_data_from_file(self, upload_file: UploadFile) -> List[Document]:
 
-         with tempfile.TemporaryDirectory() as temp_dir:
 
-             suffix = Path(upload_file.key).suffix
 
-             filepath = f"{temp_dir}/{next(tempfile._get_candidate_names())}{suffix}"
 
-             self.storage.download(upload_file.key, filepath)
 
-             file_extractor = DEFAULT_FILE_EXTRACTOR.copy()
 
-             file_extractor[".markdown"] = MarkdownParser()
 
-             file_extractor[".md"] = MarkdownParser()
 
-             file_extractor[".html"] = HTMLParser()
 
-             file_extractor[".htm"] = HTMLParser()
 
-             file_extractor[".pdf"] = PDFParser({'upload_file': upload_file})
 
-             loader = SimpleDirectoryReader(input_files=[filepath], file_extractor=file_extractor)
 
-             text_docs = loader.load_data()
 
-             return text_docs
 
-     def _get_node_parser(self, processing_rule: DatasetProcessRule) -> NodeParser:
 
-         """
 
-         Get the NodeParser object according to the processing rule.
 
-         """
 
-         if processing_rule.mode == "custom":
 
-             # The user-defined segmentation rule
 
-             rules = json.loads(processing_rule.rules)
 
-             segmentation = rules["segmentation"]
 
-             if segmentation["max_tokens"] < 50 or segmentation["max_tokens"] > 1000:
 
-                 raise ValueError("Custom segment length should be between 50 and 1000.")
 
-             separator = segmentation["separator"]
 
-             if separator:
 
-                 separator = separator.replace('\\n', '\n')
 
-             character_splitter = FixedRecursiveCharacterTextSplitter.from_tiktoken_encoder(
 
-                 chunk_size=segmentation["max_tokens"],
 
-                 chunk_overlap=0,
 
-                 fixed_separator=separator,
 
-                 separators=["\n\n", "。", ".", " ", ""]
 
-             )
 
-         else:
 
-             # Automatic segmentation
 
-             character_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
 
-                 chunk_size=DatasetProcessRule.AUTOMATIC_RULES['segmentation']['max_tokens'],
 
-                 chunk_overlap=0,
 
-                 separators=["\n\n", "。", ".", " ", ""]
 
-             )
 
-         return SimpleNodeParser(text_splitter=character_splitter, include_extra_info=True)
 
-     def _step_split(self, text_docs: List[Document], node_parser: NodeParser,
 
-                     dataset: Dataset, document: Document, processing_rule: DatasetProcessRule) -> List[Node]:
 
-         """
 
-         Split the text documents into nodes and save them to the document segment.
 
-         """
 
-         nodes = self._split_to_nodes(
 
-             text_docs=text_docs,
 
-             node_parser=node_parser,
 
-             processing_rule=processing_rule
 
-         )
 
-         # save node to document segment
 
-         doc_store = DatesetDocumentStore(
 
-             dataset=dataset,
 
-             user_id=document.created_by,
 
-             embedding_model_name=self.embedding_model_name,
 
-             document_id=document.id
 
-         )
 
-         doc_store.add_documents(nodes)
 
-         # update document status to indexing
 
-         cur_time = datetime.datetime.utcnow()
 
-         self._update_document_index_status(
 
-             document_id=document.id,
 
-             after_indexing_status="indexing",
 
-             extra_update_params={
 
-                 Document.cleaning_completed_at: cur_time,
 
-                 Document.splitting_completed_at: cur_time,
 
-             }
 
-         )
 
-         # update segment status to indexing
 
-         self._update_segments_by_document(
 
-             document_id=document.id,
 
-             update_params={
 
-                 DocumentSegment.status: "indexing",
 
-                 DocumentSegment.indexing_at: datetime.datetime.utcnow()
 
-             }
 
-         )
 
-         return nodes
 
-     def _split_to_nodes(self, text_docs: List[Document], node_parser: NodeParser,
 
-                         processing_rule: DatasetProcessRule) -> List[Node]:
 
-         """
 
-         Split the text documents into nodes.
 
-         """
 
-         all_nodes = []
 
-         for text_doc in text_docs:
 
-             # document clean
 
-             document_text = self._document_clean(text_doc.get_text(), processing_rule)
 
-             text_doc.text = document_text
 
-             # parse document to nodes
 
-             nodes = node_parser.get_nodes_from_documents([text_doc])
 
-             nodes = [node for node in nodes if node.text is not None and node.text.strip()]
 
-             all_nodes.extend(nodes)
 
-         return all_nodes
 
-     def _document_clean(self, text: str, processing_rule: DatasetProcessRule) -> str:
 
-         """
 
-         Clean the document text according to the processing rules.
 
-         """
 
-         if processing_rule.mode == "automatic":
 
-             rules = DatasetProcessRule.AUTOMATIC_RULES
 
-         else:
 
-             rules = json.loads(processing_rule.rules) if processing_rule.rules else {}
 
-         if 'pre_processing_rules' in rules:
 
-             pre_processing_rules = rules["pre_processing_rules"]
 
-             for pre_processing_rule in pre_processing_rules:
 
-                 if pre_processing_rule["id"] == "remove_extra_spaces" and pre_processing_rule["enabled"] is True:
 
-                     # Remove extra spaces
 
-                     pattern = r'\n{3,}'
 
-                     text = re.sub(pattern, '\n\n', text)
 
-                     pattern = r'[\t\f\r\x20\u00a0\u1680\u180e\u2000-\u200a\u202f\u205f\u3000]{2,}'
 
-                     text = re.sub(pattern, ' ', text)
 
-                 elif pre_processing_rule["id"] == "remove_urls_emails" and pre_processing_rule["enabled"] is True:
 
-                     # Remove email
 
-                     pattern = r'([a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+)'
 
-                     text = re.sub(pattern, '', text)
 
-                     # Remove URL
 
-                     pattern = r'https?://[^\s]+'
 
-                     text = re.sub(pattern, '', text)
 
-         return text
 
-     def _build_index(self, dataset: Dataset, document: Document, nodes: List[Node]) -> None:
 
-         """
 
-         Build the index for the document.
 
-         """
 
-         vector_index = VectorIndex(dataset=dataset)
 
-         keyword_table_index = KeywordTableIndex(dataset=dataset)
 
-         # chunk nodes by chunk size
 
-         indexing_start_at = time.perf_counter()
 
-         tokens = 0
 
-         chunk_size = 100
 
-         for i in range(0, len(nodes), chunk_size):
 
-             # check document is paused
 
-             self._check_document_paused_status(document.id)
 
-             chunk_nodes = nodes[i:i + chunk_size]
 
-             tokens += sum(
 
-                 TokenCalculator.get_num_tokens(self.embedding_model_name, node.get_text()) for node in chunk_nodes
 
-             )
 
-             # save vector index
 
-             if dataset.indexing_technique == "high_quality":
 
-                 vector_index.add_nodes(chunk_nodes)
 
-             # save keyword index
 
-             keyword_table_index.add_nodes(chunk_nodes)
 
-             node_ids = [node.doc_id for node in chunk_nodes]
 
-             db.session.query(DocumentSegment).filter(
 
-                 DocumentSegment.document_id == document.id,
 
-                 DocumentSegment.index_node_id.in_(node_ids),
 
-                 DocumentSegment.status == "indexing"
 
-             ).update({
 
-                 DocumentSegment.status: "completed",
 
-                 DocumentSegment.completed_at: datetime.datetime.utcnow()
 
-             })
 
-             db.session.commit()
 
-         indexing_end_at = time.perf_counter()
 
-         # update document status to completed
 
-         self._update_document_index_status(
 
-             document_id=document.id,
 
-             after_indexing_status="completed",
 
-             extra_update_params={
 
-                 Document.tokens: tokens,
 
-                 Document.completed_at: datetime.datetime.utcnow(),
 
-                 Document.indexing_latency: indexing_end_at - indexing_start_at,
 
-             }
 
-         )
 
-     def _check_document_paused_status(self, document_id: str):
 
-         indexing_cache_key = 'document_{}_is_paused'.format(document_id)
 
-         result = redis_client.get(indexing_cache_key)
 
-         if result:
 
-             raise DocumentIsPausedException()
 
-     def _update_document_index_status(self, document_id: str, after_indexing_status: str,
 
-                                       extra_update_params: Optional[dict] = None) -> None:
 
-         """
 
-         Update the document indexing status.
 
-         """
 
-         count = Document.query.filter_by(id=document_id, is_paused=True).count()
 
-         if count > 0:
 
-             raise DocumentIsPausedException()
 
-         update_params = {
 
-             Document.indexing_status: after_indexing_status
 
-         }
 
-         if extra_update_params:
 
-             update_params.update(extra_update_params)
 
-         Document.query.filter_by(id=document_id).update(update_params)
 
-         db.session.commit()
 
-     def _update_segments_by_document(self, document_id: str, update_params: dict) -> None:
 
-         """
 
-         Update the document segment by document id.
 
-         """
 
-         DocumentSegment.query.filter_by(document_id=document_id).update(update_params)
 
-         db.session.commit()
 
- class DocumentIsPausedException(Exception):
 
-     pass
 
 
  |