| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133 | import osfrom collections.abc import Generatorimport pytestfrom core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDeltafrom core.model_runtime.entities.message_entities import (    AssistantPromptMessage,    PromptMessageTool,    SystemPromptMessage,    UserPromptMessage,)from core.model_runtime.entities.model_entities import AIModelEntityfrom core.model_runtime.errors.validate import CredentialsValidateFailedErrorfrom core.model_runtime.model_providers.gitee_ai.llm.llm import GiteeAILargeLanguageModeldef test_predefined_models():    model = GiteeAILargeLanguageModel()    model_schemas = model.predefined_models()    assert len(model_schemas) >= 1    assert isinstance(model_schemas[0], AIModelEntity)def test_validate_credentials_for_chat_model():    model = GiteeAILargeLanguageModel()    with pytest.raises(CredentialsValidateFailedError):        # model name to gpt-3.5-turbo because of mocking        model.validate_credentials(model="gpt-3.5-turbo", credentials={"api_key": "invalid_key"})    model.validate_credentials(        model="Qwen2-7B-Instruct",        credentials={"api_key": os.environ.get("GITEE_AI_API_KEY")},    )def test_invoke_chat_model():    model = GiteeAILargeLanguageModel()    result = model.invoke(        model="Qwen2-7B-Instruct",        credentials={"api_key": os.environ.get("GITEE_AI_API_KEY")},        prompt_messages=[            SystemPromptMessage(                content="You are a helpful AI assistant.",            ),            UserPromptMessage(content="Hello World!"),        ],        model_parameters={            "temperature": 0.0,            "top_p": 1.0,            "presence_penalty": 0.0,            "frequency_penalty": 0.0,            "max_tokens": 10,            "stream": False,        },        stop=["How"],        stream=False,        user="foo",    )    assert isinstance(result, LLMResult)    assert len(result.message.content) > 0def test_invoke_stream_chat_model():    model = GiteeAILargeLanguageModel()    result = model.invoke(        model="Qwen2-7B-Instruct",        credentials={"api_key": os.environ.get("GITEE_AI_API_KEY")},        prompt_messages=[            SystemPromptMessage(                content="You are a helpful AI assistant.",            ),            UserPromptMessage(content="Hello World!"),        ],        model_parameters={"temperature": 0.0, "max_tokens": 100, "stream": False},        stream=True,        user="foo",    )    assert isinstance(result, Generator)    for chunk in result:        assert isinstance(chunk, LLMResultChunk)        assert isinstance(chunk.delta, LLMResultChunkDelta)        assert isinstance(chunk.delta.message, AssistantPromptMessage)        assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True        if chunk.delta.finish_reason is not None:            assert chunk.delta.usage is not Nonedef test_get_num_tokens():    model = GiteeAILargeLanguageModel()    num_tokens = model.get_num_tokens(        model="Qwen2-7B-Instruct",        credentials={"api_key": os.environ.get("GITEE_AI_API_KEY")},        prompt_messages=[UserPromptMessage(content="Hello World!")],    )    assert num_tokens == 10    num_tokens = model.get_num_tokens(        model="Qwen2-7B-Instruct",        credentials={"api_key": os.environ.get("GITEE_AI_API_KEY")},        prompt_messages=[            SystemPromptMessage(                content="You are a helpful AI assistant.",            ),            UserPromptMessage(content="Hello World!"),        ],        tools=[            PromptMessageTool(                name="get_weather",                description="Determine weather in my location",                parameters={                    "type": "object",                    "properties": {                        "location": {"type": "string", "description": "The city and state e.g. San Francisco, CA"},                        "unit": {"type": "string", "enum": ["c", "f"]},                    },                    "required": ["location"],                },            ),        ],    )    assert num_tokens == 77
 |