base_agent_runner.py 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535
  1. import json
  2. import logging
  3. import uuid
  4. from collections.abc import Mapping, Sequence
  5. from datetime import datetime, timezone
  6. from typing import Optional, Union, cast
  7. from core.agent.entities import AgentEntity, AgentToolEntity
  8. from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
  9. from core.app.apps.agent_chat.app_config_manager import AgentChatAppConfig
  10. from core.app.apps.base_app_queue_manager import AppQueueManager
  11. from core.app.apps.base_app_runner import AppRunner
  12. from core.app.entities.app_invoke_entities import (
  13. AgentChatAppGenerateEntity,
  14. ModelConfigWithCredentialsEntity,
  15. )
  16. from core.callback_handler.agent_tool_callback_handler import DifyAgentCallbackHandler
  17. from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
  18. from core.file.message_file_parser import MessageFileParser
  19. from core.memory.token_buffer_memory import TokenBufferMemory
  20. from core.model_manager import ModelInstance
  21. from core.model_runtime.entities.llm_entities import LLMUsage
  22. from core.model_runtime.entities.message_entities import (
  23. AssistantPromptMessage,
  24. PromptMessage,
  25. PromptMessageTool,
  26. SystemPromptMessage,
  27. TextPromptMessageContent,
  28. ToolPromptMessage,
  29. UserPromptMessage,
  30. )
  31. from core.model_runtime.entities.model_entities import ModelFeature
  32. from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
  33. from core.model_runtime.utils.encoders import jsonable_encoder
  34. from core.tools.entities.tool_entities import (
  35. ToolParameter,
  36. ToolRuntimeVariablePool,
  37. )
  38. from core.tools.tool.dataset_retriever_tool import DatasetRetrieverTool
  39. from core.tools.tool.tool import Tool
  40. from core.tools.tool_manager import ToolManager
  41. from core.tools.utils.tool_parameter_converter import ToolParameterConverter
  42. from extensions.ext_database import db
  43. from models.model import Conversation, Message, MessageAgentThought
  44. from models.tools import ToolConversationVariables
  45. logger = logging.getLogger(__name__)
  46. class BaseAgentRunner(AppRunner):
  47. def __init__(
  48. self,
  49. tenant_id: str,
  50. application_generate_entity: AgentChatAppGenerateEntity,
  51. conversation: Conversation,
  52. app_config: AgentChatAppConfig,
  53. model_config: ModelConfigWithCredentialsEntity,
  54. config: AgentEntity,
  55. queue_manager: AppQueueManager,
  56. message: Message,
  57. user_id: str,
  58. memory: Optional[TokenBufferMemory] = None,
  59. prompt_messages: Optional[list[PromptMessage]] = None,
  60. variables_pool: Optional[ToolRuntimeVariablePool] = None,
  61. db_variables: Optional[ToolConversationVariables] = None,
  62. model_instance: ModelInstance = None,
  63. ) -> None:
  64. """
  65. Agent runner
  66. :param tenant_id: tenant id
  67. :param application_generate_entity: application generate entity
  68. :param conversation: conversation
  69. :param app_config: app generate entity
  70. :param model_config: model config
  71. :param config: dataset config
  72. :param queue_manager: queue manager
  73. :param message: message
  74. :param user_id: user id
  75. :param memory: memory
  76. :param prompt_messages: prompt messages
  77. :param variables_pool: variables pool
  78. :param db_variables: db variables
  79. :param model_instance: model instance
  80. """
  81. self.tenant_id = tenant_id
  82. self.application_generate_entity = application_generate_entity
  83. self.conversation = conversation
  84. self.app_config = app_config
  85. self.model_config = model_config
  86. self.config = config
  87. self.queue_manager = queue_manager
  88. self.message = message
  89. self.user_id = user_id
  90. self.memory = memory
  91. self.history_prompt_messages = self.organize_agent_history(prompt_messages=prompt_messages or [])
  92. self.variables_pool = variables_pool
  93. self.db_variables_pool = db_variables
  94. self.model_instance = model_instance
  95. # init callback
  96. self.agent_callback = DifyAgentCallbackHandler()
  97. # init dataset tools
  98. hit_callback = DatasetIndexToolCallbackHandler(
  99. queue_manager=queue_manager,
  100. app_id=self.app_config.app_id,
  101. message_id=message.id,
  102. user_id=user_id,
  103. invoke_from=self.application_generate_entity.invoke_from,
  104. )
  105. self.dataset_tools = DatasetRetrieverTool.get_dataset_tools(
  106. tenant_id=tenant_id,
  107. dataset_ids=app_config.dataset.dataset_ids if app_config.dataset else [],
  108. retrieve_config=app_config.dataset.retrieve_config if app_config.dataset else None,
  109. return_resource=app_config.additional_features.show_retrieve_source,
  110. invoke_from=application_generate_entity.invoke_from,
  111. hit_callback=hit_callback,
  112. )
  113. # get how many agent thoughts have been created
  114. self.agent_thought_count = (
  115. db.session.query(MessageAgentThought)
  116. .filter(
  117. MessageAgentThought.message_id == self.message.id,
  118. )
  119. .count()
  120. )
  121. db.session.close()
  122. # check if model supports stream tool call
  123. llm_model = cast(LargeLanguageModel, model_instance.model_type_instance)
  124. model_schema = llm_model.get_model_schema(model_instance.model, model_instance.credentials)
  125. if model_schema and ModelFeature.STREAM_TOOL_CALL in (model_schema.features or []):
  126. self.stream_tool_call = True
  127. else:
  128. self.stream_tool_call = False
  129. # check if model supports vision
  130. if model_schema and ModelFeature.VISION in (model_schema.features or []):
  131. self.files = application_generate_entity.files
  132. else:
  133. self.files = []
  134. self.query = None
  135. self._current_thoughts: list[PromptMessage] = []
  136. def _repack_app_generate_entity(
  137. self, app_generate_entity: AgentChatAppGenerateEntity
  138. ) -> AgentChatAppGenerateEntity:
  139. """
  140. Repack app generate entity
  141. """
  142. if app_generate_entity.app_config.prompt_template.simple_prompt_template is None:
  143. app_generate_entity.app_config.prompt_template.simple_prompt_template = ""
  144. return app_generate_entity
  145. def _convert_tool_to_prompt_message_tool(self, tool: AgentToolEntity) -> tuple[PromptMessageTool, Tool]:
  146. """
  147. convert tool to prompt message tool
  148. """
  149. tool_entity = ToolManager.get_agent_tool_runtime(
  150. tenant_id=self.tenant_id,
  151. app_id=self.app_config.app_id,
  152. agent_tool=tool,
  153. invoke_from=self.application_generate_entity.invoke_from,
  154. )
  155. tool_entity.load_variables(self.variables_pool)
  156. message_tool = PromptMessageTool(
  157. name=tool.tool_name,
  158. description=tool_entity.description.llm,
  159. parameters={
  160. "type": "object",
  161. "properties": {},
  162. "required": [],
  163. },
  164. )
  165. parameters = tool_entity.get_all_runtime_parameters()
  166. for parameter in parameters:
  167. if parameter.form != ToolParameter.ToolParameterForm.LLM:
  168. continue
  169. parameter_type = ToolParameterConverter.get_parameter_type(parameter.type)
  170. enum = []
  171. if parameter.type == ToolParameter.ToolParameterType.SELECT:
  172. enum = [option.value for option in parameter.options]
  173. message_tool.parameters["properties"][parameter.name] = {
  174. "type": parameter_type,
  175. "description": parameter.llm_description or "",
  176. }
  177. if len(enum) > 0:
  178. message_tool.parameters["properties"][parameter.name]["enum"] = enum
  179. if parameter.required:
  180. message_tool.parameters["required"].append(parameter.name)
  181. return message_tool, tool_entity
  182. def _convert_dataset_retriever_tool_to_prompt_message_tool(self, tool: DatasetRetrieverTool) -> PromptMessageTool:
  183. """
  184. convert dataset retriever tool to prompt message tool
  185. """
  186. prompt_tool = PromptMessageTool(
  187. name=tool.identity.name,
  188. description=tool.description.llm,
  189. parameters={
  190. "type": "object",
  191. "properties": {},
  192. "required": [],
  193. },
  194. )
  195. for parameter in tool.get_runtime_parameters():
  196. parameter_type = "string"
  197. prompt_tool.parameters["properties"][parameter.name] = {
  198. "type": parameter_type,
  199. "description": parameter.llm_description or "",
  200. }
  201. if parameter.required:
  202. if parameter.name not in prompt_tool.parameters["required"]:
  203. prompt_tool.parameters["required"].append(parameter.name)
  204. return prompt_tool
  205. def _init_prompt_tools(self) -> tuple[Mapping[str, Tool], Sequence[PromptMessageTool]]:
  206. """
  207. Init tools
  208. """
  209. tool_instances = {}
  210. prompt_messages_tools = []
  211. for tool in self.app_config.agent.tools if self.app_config.agent else []:
  212. try:
  213. prompt_tool, tool_entity = self._convert_tool_to_prompt_message_tool(tool)
  214. except Exception:
  215. # api tool may be deleted
  216. continue
  217. # save tool entity
  218. tool_instances[tool.tool_name] = tool_entity
  219. # save prompt tool
  220. prompt_messages_tools.append(prompt_tool)
  221. # convert dataset tools into ModelRuntime Tool format
  222. for dataset_tool in self.dataset_tools:
  223. prompt_tool = self._convert_dataset_retriever_tool_to_prompt_message_tool(dataset_tool)
  224. # save prompt tool
  225. prompt_messages_tools.append(prompt_tool)
  226. # save tool entity
  227. tool_instances[dataset_tool.identity.name] = dataset_tool
  228. return tool_instances, prompt_messages_tools
  229. def update_prompt_message_tool(self, tool: Tool, prompt_tool: PromptMessageTool) -> PromptMessageTool:
  230. """
  231. update prompt message tool
  232. """
  233. # try to get tool runtime parameters
  234. tool_runtime_parameters = tool.get_runtime_parameters() or []
  235. for parameter in tool_runtime_parameters:
  236. if parameter.form != ToolParameter.ToolParameterForm.LLM:
  237. continue
  238. parameter_type = ToolParameterConverter.get_parameter_type(parameter.type)
  239. enum = []
  240. if parameter.type == ToolParameter.ToolParameterType.SELECT:
  241. enum = [option.value for option in parameter.options]
  242. prompt_tool.parameters["properties"][parameter.name] = {
  243. "type": parameter_type,
  244. "description": parameter.llm_description or "",
  245. }
  246. if len(enum) > 0:
  247. prompt_tool.parameters["properties"][parameter.name]["enum"] = enum
  248. if parameter.required:
  249. if parameter.name not in prompt_tool.parameters["required"]:
  250. prompt_tool.parameters["required"].append(parameter.name)
  251. return prompt_tool
  252. def create_agent_thought(
  253. self, message_id: str, message: str, tool_name: str, tool_input: str, messages_ids: list[str]
  254. ) -> MessageAgentThought:
  255. """
  256. Create agent thought
  257. """
  258. thought = MessageAgentThought(
  259. message_id=message_id,
  260. message_chain_id=None,
  261. thought="",
  262. tool=tool_name,
  263. tool_labels_str="{}",
  264. tool_meta_str="{}",
  265. tool_input=tool_input,
  266. message=message,
  267. message_token=0,
  268. message_unit_price=0,
  269. message_price_unit=0,
  270. message_files=json.dumps(messages_ids) if messages_ids else "",
  271. answer="",
  272. observation="",
  273. answer_token=0,
  274. answer_unit_price=0,
  275. answer_price_unit=0,
  276. tokens=0,
  277. total_price=0,
  278. position=self.agent_thought_count + 1,
  279. currency="USD",
  280. latency=0,
  281. created_by_role="account",
  282. created_by=self.user_id,
  283. )
  284. db.session.add(thought)
  285. db.session.commit()
  286. db.session.refresh(thought)
  287. db.session.close()
  288. self.agent_thought_count += 1
  289. return thought
  290. def save_agent_thought(
  291. self,
  292. agent_thought: MessageAgentThought,
  293. tool_name: str,
  294. tool_input: Union[str, dict],
  295. thought: str,
  296. observation: Union[str, dict],
  297. tool_invoke_meta: Union[str, dict],
  298. answer: str,
  299. messages_ids: list[str],
  300. llm_usage: LLMUsage = None,
  301. ) -> MessageAgentThought:
  302. """
  303. Save agent thought
  304. """
  305. agent_thought = db.session.query(MessageAgentThought).filter(MessageAgentThought.id == agent_thought.id).first()
  306. if thought is not None:
  307. agent_thought.thought = thought
  308. if tool_name is not None:
  309. agent_thought.tool = tool_name
  310. if tool_input is not None:
  311. if isinstance(tool_input, dict):
  312. try:
  313. tool_input = json.dumps(tool_input, ensure_ascii=False)
  314. except Exception as e:
  315. tool_input = json.dumps(tool_input)
  316. agent_thought.tool_input = tool_input
  317. if observation is not None:
  318. if isinstance(observation, dict):
  319. try:
  320. observation = json.dumps(observation, ensure_ascii=False)
  321. except Exception as e:
  322. observation = json.dumps(observation)
  323. agent_thought.observation = observation
  324. if answer is not None:
  325. agent_thought.answer = answer
  326. if messages_ids is not None and len(messages_ids) > 0:
  327. agent_thought.message_files = json.dumps(messages_ids)
  328. if llm_usage:
  329. agent_thought.message_token = llm_usage.prompt_tokens
  330. agent_thought.message_price_unit = llm_usage.prompt_price_unit
  331. agent_thought.message_unit_price = llm_usage.prompt_unit_price
  332. agent_thought.answer_token = llm_usage.completion_tokens
  333. agent_thought.answer_price_unit = llm_usage.completion_price_unit
  334. agent_thought.answer_unit_price = llm_usage.completion_unit_price
  335. agent_thought.tokens = llm_usage.total_tokens
  336. agent_thought.total_price = llm_usage.total_price
  337. # check if tool labels is not empty
  338. labels = agent_thought.tool_labels or {}
  339. tools = agent_thought.tool.split(";") if agent_thought.tool else []
  340. for tool in tools:
  341. if not tool:
  342. continue
  343. if tool not in labels:
  344. tool_label = ToolManager.get_tool_label(tool)
  345. if tool_label:
  346. labels[tool] = tool_label.to_dict()
  347. else:
  348. labels[tool] = {"en_US": tool, "zh_Hans": tool}
  349. agent_thought.tool_labels_str = json.dumps(labels)
  350. if tool_invoke_meta is not None:
  351. if isinstance(tool_invoke_meta, dict):
  352. try:
  353. tool_invoke_meta = json.dumps(tool_invoke_meta, ensure_ascii=False)
  354. except Exception as e:
  355. tool_invoke_meta = json.dumps(tool_invoke_meta)
  356. agent_thought.tool_meta_str = tool_invoke_meta
  357. db.session.commit()
  358. db.session.close()
  359. def update_db_variables(self, tool_variables: ToolRuntimeVariablePool, db_variables: ToolConversationVariables):
  360. """
  361. convert tool variables to db variables
  362. """
  363. db_variables = (
  364. db.session.query(ToolConversationVariables)
  365. .filter(
  366. ToolConversationVariables.conversation_id == self.message.conversation_id,
  367. )
  368. .first()
  369. )
  370. db_variables.updated_at = datetime.now(timezone.utc).replace(tzinfo=None)
  371. db_variables.variables_str = json.dumps(jsonable_encoder(tool_variables.pool))
  372. db.session.commit()
  373. db.session.close()
  374. def organize_agent_history(self, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
  375. """
  376. Organize agent history
  377. """
  378. result = []
  379. # check if there is a system message in the beginning of the conversation
  380. for prompt_message in prompt_messages:
  381. if isinstance(prompt_message, SystemPromptMessage):
  382. result.append(prompt_message)
  383. messages: list[Message] = (
  384. db.session.query(Message)
  385. .filter(
  386. Message.conversation_id == self.message.conversation_id,
  387. )
  388. .order_by(Message.created_at.asc())
  389. .all()
  390. )
  391. for message in messages:
  392. if message.id == self.message.id:
  393. continue
  394. result.append(self.organize_agent_user_prompt(message))
  395. agent_thoughts: list[MessageAgentThought] = message.agent_thoughts
  396. if agent_thoughts:
  397. for agent_thought in agent_thoughts:
  398. tools = agent_thought.tool
  399. if tools:
  400. tools = tools.split(";")
  401. tool_calls: list[AssistantPromptMessage.ToolCall] = []
  402. tool_call_response: list[ToolPromptMessage] = []
  403. try:
  404. tool_inputs = json.loads(agent_thought.tool_input)
  405. except Exception as e:
  406. tool_inputs = {tool: {} for tool in tools}
  407. try:
  408. tool_responses = json.loads(agent_thought.observation)
  409. except Exception as e:
  410. tool_responses = dict.fromkeys(tools, agent_thought.observation)
  411. for tool in tools:
  412. # generate a uuid for tool call
  413. tool_call_id = str(uuid.uuid4())
  414. tool_calls.append(
  415. AssistantPromptMessage.ToolCall(
  416. id=tool_call_id,
  417. type="function",
  418. function=AssistantPromptMessage.ToolCall.ToolCallFunction(
  419. name=tool,
  420. arguments=json.dumps(tool_inputs.get(tool, {})),
  421. ),
  422. )
  423. )
  424. tool_call_response.append(
  425. ToolPromptMessage(
  426. content=tool_responses.get(tool, agent_thought.observation),
  427. name=tool,
  428. tool_call_id=tool_call_id,
  429. )
  430. )
  431. result.extend(
  432. [
  433. AssistantPromptMessage(
  434. content=agent_thought.thought,
  435. tool_calls=tool_calls,
  436. ),
  437. *tool_call_response,
  438. ]
  439. )
  440. if not tools:
  441. result.append(AssistantPromptMessage(content=agent_thought.thought))
  442. else:
  443. if message.answer:
  444. result.append(AssistantPromptMessage(content=message.answer))
  445. db.session.close()
  446. return result
  447. def organize_agent_user_prompt(self, message: Message) -> UserPromptMessage:
  448. message_file_parser = MessageFileParser(
  449. tenant_id=self.tenant_id,
  450. app_id=self.app_config.app_id,
  451. )
  452. files = message.message_files
  453. if files:
  454. file_extra_config = FileUploadConfigManager.convert(message.app_model_config.to_dict())
  455. if file_extra_config:
  456. file_objs = message_file_parser.transform_message_files(files, file_extra_config)
  457. else:
  458. file_objs = []
  459. if not file_objs:
  460. return UserPromptMessage(content=message.query)
  461. else:
  462. prompt_message_contents = [TextPromptMessageContent(data=message.query)]
  463. for file_obj in file_objs:
  464. prompt_message_contents.append(file_obj.prompt_message_content)
  465. return UserPromptMessage(content=prompt_message_contents)
  466. else:
  467. return UserPromptMessage(content=message.query)