Yeuoly ea497f828f feat: endpoint management hai 8 meses
..
.idea 7ae728a9a3 fix nltk averaged_perceptron_tagger download and fix score limit is none (#7582) hai 9 meses
.vscode 0d4753785f chore: remove .idea and .vscode from root path (#7437) hai 9 meses
configs cda9f6ec6b Merge main into fix/chore-fix hai 8 meses
constants 8c51d06222 feat: regenerate in `Chat`, `agent` and `Chatflow` app (#7661) hai 8 meses
contexts 3571292fbf chore(api): Introduce Ruff Formatter. (#7291) hai 9 meses
controllers ea497f828f feat: endpoint management hai 8 meses
core ea497f828f feat: endpoint management hai 8 meses
docker 8dfdb37de3 fix: use LOG_LEVEL for celery startup (#7628) hai 9 meses
events 40fb4d16ef chore: refurbish Python code by applying refurb linter rules (#8296) hai 8 meses
extensions d96f5ba1ca add storage error log (#8556) hai 8 meses
fields 8c51d06222 feat: regenerate in `Chat`, `agent` and `Chatflow` app (#7661) hai 8 meses
libs 00d1c45518 Merge main hai 8 meses
migrations 8c51d06222 feat: regenerate in `Chat`, `agent` and `Chatflow` app (#7661) hai 8 meses
models cda9f6ec6b Merge main into fix/chore-fix hai 8 meses
schedule 3571292fbf chore(api): Introduce Ruff Formatter. (#7291) hai 9 meses
services ea497f828f feat: endpoint management hai 8 meses
tasks a1104ab97e chore: refurish python code by applying Pylint linter rules (#8322) hai 8 meses
templates 00b4cc3cd4 feat: implement forgot password feature (#5534) hai 11 meses
tests cda9f6ec6b Merge main into fix/chore-fix hai 8 meses
.dockerignore 27f0ae8416 build: support Poetry for depencencies tool in api's Dockerfile (#5105) hai 11 meses
.env.example 73ce692e24 feat: add inner api key hai 8 meses
Dockerfile fede54be77 fix: Version '2.6.2-2' for 'expat' was not found (#8182) hai 8 meses
README.md e75c33a561 Enhance Readme Documentation to Clarify the Importance of Celery Service (#8558) hai 8 meses
app.py a1104ab97e chore: refurish python code by applying Pylint linter rules (#8322) hai 8 meses
commands.py bef83a4d2e fix: typos and improve naming conventions: (#8687) hai 8 meses
poetry.lock d7aada38a1 Add nomic embedding model provider (#8640) hai 8 meses
poetry.toml f62f71a81a build: initial support for poetry build tool (#4513) hai 11 meses
pyproject.toml 1ecf70dca0 feat: add mixedbread as a new model provider (#8523) hai 8 meses

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   # change the profile to other vector database if you are not using weaviate
   docker compose -f docker-compose.middleware.yaml --profile weaviate -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.

```bash for Linux sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env


   ```bash for Mac
   secret_key=$(openssl rand -base64 42)
   sed -i '' "/^SECRET_KEY=/c\\
   SECRET_KEY=${secret_key}" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies
   poetry env use 3.10
   poetry install

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000...
  3. If you need to handle and debug the async tasks (e.g. dataset importing and documents indexing), please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   cd ../
   poetry run -C api bash dev/pytest/pytest_all_tests.sh