hit_testing_service.py 5.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174
  1. import logging
  2. import time
  3. from typing import Any
  4. from core.rag.datasource.retrieval_service import RetrievalService
  5. from core.rag.models.document import Document
  6. from core.rag.retrieval.retrieval_methods import RetrievalMethod
  7. from extensions.ext_database import db
  8. from models.account import Account
  9. from models.dataset import Dataset, DatasetQuery, DocumentSegment
  10. default_retrieval_model = {
  11. "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
  12. "reranking_enable": False,
  13. "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
  14. "top_k": 2,
  15. "score_threshold_enabled": False,
  16. }
  17. class HitTestingService:
  18. @classmethod
  19. def retrieve(
  20. cls,
  21. dataset: Dataset,
  22. query: str,
  23. account: Account,
  24. retrieval_model: Any, # FIXME drop this any
  25. external_retrieval_model: dict,
  26. limit: int = 10,
  27. ) -> dict:
  28. if dataset.available_document_count == 0 or dataset.available_segment_count == 0:
  29. return {
  30. "query": {
  31. "content": query,
  32. "tsne_position": {"x": 0, "y": 0},
  33. },
  34. "records": [],
  35. }
  36. start = time.perf_counter()
  37. # get retrieval model , if the model is not setting , using default
  38. if not retrieval_model:
  39. retrieval_model = dataset.retrieval_model or default_retrieval_model
  40. all_documents = RetrievalService.retrieve(
  41. retrieval_method=retrieval_model.get("search_method", "semantic_search"),
  42. dataset_id=dataset.id,
  43. query=cls.escape_query_for_search(query),
  44. top_k=retrieval_model.get("top_k", 2),
  45. score_threshold=retrieval_model.get("score_threshold", 0.0)
  46. if retrieval_model["score_threshold_enabled"]
  47. else 0.0,
  48. reranking_model=retrieval_model.get("reranking_model", None)
  49. if retrieval_model["reranking_enable"]
  50. else None,
  51. reranking_mode=retrieval_model.get("reranking_mode") or "reranking_model",
  52. weights=retrieval_model.get("weights", None),
  53. )
  54. end = time.perf_counter()
  55. logging.debug(f"Hit testing retrieve in {end - start:0.4f} seconds")
  56. dataset_query = DatasetQuery(
  57. dataset_id=dataset.id, content=query, source="hit_testing", created_by_role="account", created_by=account.id
  58. )
  59. db.session.add(dataset_query)
  60. db.session.commit()
  61. return dict(cls.compact_retrieve_response(dataset, query, all_documents))
  62. @classmethod
  63. def external_retrieve(
  64. cls,
  65. dataset: Dataset,
  66. query: str,
  67. account: Account,
  68. external_retrieval_model: dict,
  69. ) -> dict:
  70. if dataset.provider != "external":
  71. return {
  72. "query": {"content": query},
  73. "records": [],
  74. }
  75. start = time.perf_counter()
  76. all_documents = RetrievalService.external_retrieve(
  77. dataset_id=dataset.id,
  78. query=cls.escape_query_for_search(query),
  79. external_retrieval_model=external_retrieval_model,
  80. )
  81. end = time.perf_counter()
  82. logging.debug(f"External knowledge hit testing retrieve in {end - start:0.4f} seconds")
  83. dataset_query = DatasetQuery(
  84. dataset_id=dataset.id, content=query, source="hit_testing", created_by_role="account", created_by=account.id
  85. )
  86. db.session.add(dataset_query)
  87. db.session.commit()
  88. return dict(cls.compact_external_retrieve_response(dataset, query, all_documents))
  89. @classmethod
  90. def compact_retrieve_response(cls, dataset: Dataset, query: str, documents: list[Document]):
  91. records = []
  92. for document in documents:
  93. if document.metadata is None:
  94. continue
  95. index_node_id = document.metadata["doc_id"]
  96. segment = (
  97. db.session.query(DocumentSegment)
  98. .filter(
  99. DocumentSegment.dataset_id == dataset.id,
  100. DocumentSegment.enabled == True,
  101. DocumentSegment.status == "completed",
  102. DocumentSegment.index_node_id == index_node_id,
  103. )
  104. .first()
  105. )
  106. if not segment:
  107. continue
  108. record = {
  109. "segment": segment,
  110. "score": document.metadata.get("score", None),
  111. }
  112. records.append(record)
  113. return {
  114. "query": {
  115. "content": query,
  116. },
  117. "records": records,
  118. }
  119. @classmethod
  120. def compact_external_retrieve_response(cls, dataset: Dataset, query: str, documents: list) -> dict[Any, Any]:
  121. records = []
  122. if dataset.provider == "external":
  123. for document in documents:
  124. record = {
  125. "content": document.get("content", None),
  126. "title": document.get("title", None),
  127. "score": document.get("score", None),
  128. "metadata": document.get("metadata", None),
  129. }
  130. records.append(record)
  131. return {
  132. "query": {"content": query},
  133. "records": records,
  134. }
  135. return {"query": {"content": query}, "records": []}
  136. @classmethod
  137. def hit_testing_args_check(cls, args):
  138. query = args["query"]
  139. if not query or len(query) > 250:
  140. raise ValueError("Query is required and cannot exceed 250 characters")
  141. @staticmethod
  142. def escape_query_for_search(query: str) -> str:
  143. return query.replace('"', '\\"')