document.py 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341
  1. import json
  2. from flask import request
  3. from flask_restful import marshal, reqparse
  4. from sqlalchemy import desc
  5. from werkzeug.exceptions import NotFound
  6. import services.dataset_service
  7. from controllers.service_api import api
  8. from controllers.service_api.app.error import ProviderNotInitializeError
  9. from controllers.service_api.dataset.error import (
  10. ArchivedDocumentImmutableError,
  11. DocumentIndexingError,
  12. NoFileUploadedError,
  13. TooManyFilesError,
  14. )
  15. from controllers.service_api.wraps import DatasetApiResource, cloud_edition_billing_resource_check
  16. from core.errors.error import ProviderTokenNotInitError
  17. from extensions.ext_database import db
  18. from fields.document_fields import document_fields, document_status_fields
  19. from libs.login import current_user
  20. from models.dataset import Dataset, Document, DocumentSegment
  21. from services.dataset_service import DocumentService
  22. from services.file_service import FileService
  23. class DocumentAddByTextApi(DatasetApiResource):
  24. """Resource for documents."""
  25. @cloud_edition_billing_resource_check("vector_space", "dataset")
  26. @cloud_edition_billing_resource_check("documents", "dataset")
  27. def post(self, tenant_id, dataset_id):
  28. """Create document by text."""
  29. parser = reqparse.RequestParser()
  30. parser.add_argument("name", type=str, required=True, nullable=False, location="json")
  31. parser.add_argument("text", type=str, required=True, nullable=False, location="json")
  32. parser.add_argument("process_rule", type=dict, required=False, nullable=True, location="json")
  33. parser.add_argument("original_document_id", type=str, required=False, location="json")
  34. parser.add_argument("doc_form", type=str, default="text_model", required=False, nullable=False, location="json")
  35. parser.add_argument(
  36. "doc_language", type=str, default="English", required=False, nullable=False, location="json"
  37. )
  38. parser.add_argument(
  39. "indexing_technique", type=str, choices=Dataset.INDEXING_TECHNIQUE_LIST, nullable=False, location="json"
  40. )
  41. parser.add_argument("retrieval_model", type=dict, required=False, nullable=False, location="json")
  42. args = parser.parse_args()
  43. dataset_id = str(dataset_id)
  44. tenant_id = str(tenant_id)
  45. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  46. if not dataset:
  47. raise ValueError("Dataset is not exist.")
  48. if not dataset.indexing_technique and not args["indexing_technique"]:
  49. raise ValueError("indexing_technique is required.")
  50. upload_file = FileService.upload_text(args.get("text"), args.get("name"))
  51. data_source = {
  52. "type": "upload_file",
  53. "info_list": {"data_source_type": "upload_file", "file_info_list": {"file_ids": [upload_file.id]}},
  54. }
  55. args["data_source"] = data_source
  56. # validate args
  57. DocumentService.document_create_args_validate(args)
  58. try:
  59. documents, batch = DocumentService.save_document_with_dataset_id(
  60. dataset=dataset,
  61. document_data=args,
  62. account=current_user,
  63. dataset_process_rule=dataset.latest_process_rule if "process_rule" not in args else None,
  64. created_from="api",
  65. )
  66. except ProviderTokenNotInitError as ex:
  67. raise ProviderNotInitializeError(ex.description)
  68. document = documents[0]
  69. documents_and_batch_fields = {"document": marshal(document, document_fields), "batch": batch}
  70. return documents_and_batch_fields, 200
  71. class DocumentUpdateByTextApi(DatasetApiResource):
  72. """Resource for update documents."""
  73. @cloud_edition_billing_resource_check("vector_space", "dataset")
  74. def post(self, tenant_id, dataset_id, document_id):
  75. """Update document by text."""
  76. parser = reqparse.RequestParser()
  77. parser.add_argument("name", type=str, required=False, nullable=True, location="json")
  78. parser.add_argument("text", type=str, required=False, nullable=True, location="json")
  79. parser.add_argument("process_rule", type=dict, required=False, nullable=True, location="json")
  80. parser.add_argument("doc_form", type=str, default="text_model", required=False, nullable=False, location="json")
  81. parser.add_argument(
  82. "doc_language", type=str, default="English", required=False, nullable=False, location="json"
  83. )
  84. parser.add_argument("retrieval_model", type=dict, required=False, nullable=False, location="json")
  85. args = parser.parse_args()
  86. dataset_id = str(dataset_id)
  87. tenant_id = str(tenant_id)
  88. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  89. if not dataset:
  90. raise ValueError("Dataset is not exist.")
  91. if args["text"]:
  92. upload_file = FileService.upload_text(args.get("text"), args.get("name"))
  93. data_source = {
  94. "type": "upload_file",
  95. "info_list": {"data_source_type": "upload_file", "file_info_list": {"file_ids": [upload_file.id]}},
  96. }
  97. args["data_source"] = data_source
  98. # validate args
  99. args["original_document_id"] = str(document_id)
  100. DocumentService.document_create_args_validate(args)
  101. try:
  102. documents, batch = DocumentService.save_document_with_dataset_id(
  103. dataset=dataset,
  104. document_data=args,
  105. account=current_user,
  106. dataset_process_rule=dataset.latest_process_rule if "process_rule" not in args else None,
  107. created_from="api",
  108. )
  109. except ProviderTokenNotInitError as ex:
  110. raise ProviderNotInitializeError(ex.description)
  111. document = documents[0]
  112. documents_and_batch_fields = {"document": marshal(document, document_fields), "batch": batch}
  113. return documents_and_batch_fields, 200
  114. class DocumentAddByFileApi(DatasetApiResource):
  115. """Resource for documents."""
  116. @cloud_edition_billing_resource_check("vector_space", "dataset")
  117. @cloud_edition_billing_resource_check("documents", "dataset")
  118. def post(self, tenant_id, dataset_id):
  119. """Create document by upload file."""
  120. args = {}
  121. if "data" in request.form:
  122. args = json.loads(request.form["data"])
  123. if "doc_form" not in args:
  124. args["doc_form"] = "text_model"
  125. if "doc_language" not in args:
  126. args["doc_language"] = "English"
  127. # get dataset info
  128. dataset_id = str(dataset_id)
  129. tenant_id = str(tenant_id)
  130. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  131. if not dataset:
  132. raise ValueError("Dataset is not exist.")
  133. if not dataset.indexing_technique and not args.get("indexing_technique"):
  134. raise ValueError("indexing_technique is required.")
  135. # save file info
  136. file = request.files["file"]
  137. # check file
  138. if "file" not in request.files:
  139. raise NoFileUploadedError()
  140. if len(request.files) > 1:
  141. raise TooManyFilesError()
  142. upload_file = FileService.upload_file(file, current_user)
  143. data_source = {"type": "upload_file", "info_list": {"file_info_list": {"file_ids": [upload_file.id]}}}
  144. args["data_source"] = data_source
  145. # validate args
  146. DocumentService.document_create_args_validate(args)
  147. try:
  148. documents, batch = DocumentService.save_document_with_dataset_id(
  149. dataset=dataset,
  150. document_data=args,
  151. account=dataset.created_by_account,
  152. dataset_process_rule=dataset.latest_process_rule if "process_rule" not in args else None,
  153. created_from="api",
  154. )
  155. except ProviderTokenNotInitError as ex:
  156. raise ProviderNotInitializeError(ex.description)
  157. document = documents[0]
  158. documents_and_batch_fields = {"document": marshal(document, document_fields), "batch": batch}
  159. return documents_and_batch_fields, 200
  160. class DocumentUpdateByFileApi(DatasetApiResource):
  161. """Resource for update documents."""
  162. @cloud_edition_billing_resource_check("vector_space", "dataset")
  163. def post(self, tenant_id, dataset_id, document_id):
  164. """Update document by upload file."""
  165. args = {}
  166. if "data" in request.form:
  167. args = json.loads(request.form["data"])
  168. if "doc_form" not in args:
  169. args["doc_form"] = "text_model"
  170. if "doc_language" not in args:
  171. args["doc_language"] = "English"
  172. # get dataset info
  173. dataset_id = str(dataset_id)
  174. tenant_id = str(tenant_id)
  175. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  176. if not dataset:
  177. raise ValueError("Dataset is not exist.")
  178. if "file" in request.files:
  179. # save file info
  180. file = request.files["file"]
  181. if len(request.files) > 1:
  182. raise TooManyFilesError()
  183. upload_file = FileService.upload_file(file, current_user)
  184. data_source = {"type": "upload_file", "info_list": {"file_info_list": {"file_ids": [upload_file.id]}}}
  185. args["data_source"] = data_source
  186. # validate args
  187. args["original_document_id"] = str(document_id)
  188. DocumentService.document_create_args_validate(args)
  189. try:
  190. documents, batch = DocumentService.save_document_with_dataset_id(
  191. dataset=dataset,
  192. document_data=args,
  193. account=dataset.created_by_account,
  194. dataset_process_rule=dataset.latest_process_rule if "process_rule" not in args else None,
  195. created_from="api",
  196. )
  197. except ProviderTokenNotInitError as ex:
  198. raise ProviderNotInitializeError(ex.description)
  199. document = documents[0]
  200. documents_and_batch_fields = {"document": marshal(document, document_fields), "batch": document.batch}
  201. return documents_and_batch_fields, 200
  202. class DocumentDeleteApi(DatasetApiResource):
  203. def delete(self, tenant_id, dataset_id, document_id):
  204. """Delete document."""
  205. document_id = str(document_id)
  206. dataset_id = str(dataset_id)
  207. tenant_id = str(tenant_id)
  208. # get dataset info
  209. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  210. if not dataset:
  211. raise ValueError("Dataset is not exist.")
  212. document = DocumentService.get_document(dataset.id, document_id)
  213. # 404 if document not found
  214. if document is None:
  215. raise NotFound("Document Not Exists.")
  216. # 403 if document is archived
  217. if DocumentService.check_archived(document):
  218. raise ArchivedDocumentImmutableError()
  219. try:
  220. # delete document
  221. DocumentService.delete_document(document)
  222. except services.errors.document.DocumentIndexingError:
  223. raise DocumentIndexingError("Cannot delete document during indexing.")
  224. return {"result": "success"}, 200
  225. class DocumentListApi(DatasetApiResource):
  226. def get(self, tenant_id, dataset_id):
  227. dataset_id = str(dataset_id)
  228. tenant_id = str(tenant_id)
  229. page = request.args.get("page", default=1, type=int)
  230. limit = request.args.get("limit", default=20, type=int)
  231. search = request.args.get("keyword", default=None, type=str)
  232. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  233. if not dataset:
  234. raise NotFound("Dataset not found.")
  235. query = Document.query.filter_by(dataset_id=str(dataset_id), tenant_id=tenant_id)
  236. if search:
  237. search = f"%{search}%"
  238. query = query.filter(Document.name.like(search))
  239. query = query.order_by(desc(Document.created_at))
  240. paginated_documents = query.paginate(page=page, per_page=limit, max_per_page=100, error_out=False)
  241. documents = paginated_documents.items
  242. response = {
  243. "data": marshal(documents, document_fields),
  244. "has_more": len(documents) == limit,
  245. "limit": limit,
  246. "total": paginated_documents.total,
  247. "page": page,
  248. }
  249. return response
  250. class DocumentIndexingStatusApi(DatasetApiResource):
  251. def get(self, tenant_id, dataset_id, batch):
  252. dataset_id = str(dataset_id)
  253. batch = str(batch)
  254. tenant_id = str(tenant_id)
  255. # get dataset
  256. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  257. if not dataset:
  258. raise NotFound("Dataset not found.")
  259. # get documents
  260. documents = DocumentService.get_batch_documents(dataset_id, batch)
  261. if not documents:
  262. raise NotFound("Documents not found.")
  263. documents_status = []
  264. for document in documents:
  265. completed_segments = DocumentSegment.query.filter(
  266. DocumentSegment.completed_at.isnot(None),
  267. DocumentSegment.document_id == str(document.id),
  268. DocumentSegment.status != "re_segment",
  269. ).count()
  270. total_segments = DocumentSegment.query.filter(
  271. DocumentSegment.document_id == str(document.id), DocumentSegment.status != "re_segment"
  272. ).count()
  273. document.completed_segments = completed_segments
  274. document.total_segments = total_segments
  275. if document.is_paused:
  276. document.indexing_status = "paused"
  277. documents_status.append(marshal(document, document_status_fields))
  278. data = {"data": documents_status}
  279. return data
  280. api.add_resource(DocumentAddByTextApi, "/datasets/<uuid:dataset_id>/document/create_by_text")
  281. api.add_resource(DocumentAddByFileApi, "/datasets/<uuid:dataset_id>/document/create_by_file")
  282. api.add_resource(DocumentUpdateByTextApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update_by_text")
  283. api.add_resource(DocumentUpdateByFileApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update_by_file")
  284. api.add_resource(DocumentDeleteApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>")
  285. api.add_resource(DocumentListApi, "/datasets/<uuid:dataset_id>/documents")
  286. api.add_resource(DocumentIndexingStatusApi, "/datasets/<uuid:dataset_id>/documents/<string:batch>/indexing-status")