| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475 | import loggingimport timeimport clickfrom celery import shared_taskfrom core.rag.index_processor.index_processor_factory import IndexProcessorFactoryfrom extensions.ext_database import dbfrom models.dataset import (    AppDatasetJoin,    Dataset,    DatasetProcessRule,    DatasetQuery,    Document,    DocumentSegment,)# Add import statement for ValueError@shared_task(queue='dataset')def clean_dataset_task(dataset_id: str, tenant_id: str, indexing_technique: str,                       index_struct: str, collection_binding_id: str, doc_form: str):    """    Clean dataset when dataset deleted.    :param dataset_id: dataset id    :param tenant_id: tenant id    :param indexing_technique: indexing technique    :param index_struct: index struct dict    :param collection_binding_id: collection binding id    :param doc_form: dataset form    Usage: clean_dataset_task.delay(dataset_id, tenant_id, indexing_technique, index_struct)    """    logging.info(click.style('Start clean dataset when dataset deleted: {}'.format(dataset_id), fg='green'))    start_at = time.perf_counter()    try:        dataset = Dataset(            id=dataset_id,            tenant_id=tenant_id,            indexing_technique=indexing_technique,            index_struct=index_struct,            collection_binding_id=collection_binding_id,        )        documents = db.session.query(Document).filter(Document.dataset_id == dataset_id).all()        segments = db.session.query(DocumentSegment).filter(DocumentSegment.dataset_id == dataset_id).all()        if documents is None or len(documents) == 0:            logging.info(click.style('No documents found for dataset: {}'.format(dataset_id), fg='green'))        else:            logging.info(click.style('Cleaning documents for dataset: {}'.format(dataset_id), fg='green'))            # Specify the index type before initializing the index processor            if doc_form is None:                raise ValueError("Index type must be specified.")            index_processor = IndexProcessorFactory(doc_form).init_index_processor()            index_processor.clean(dataset, None)            for document in documents:                db.session.delete(document)            for segment in segments:                db.session.delete(segment)        db.session.query(DatasetProcessRule).filter(DatasetProcessRule.dataset_id == dataset_id).delete()        db.session.query(DatasetQuery).filter(DatasetQuery.dataset_id == dataset_id).delete()        db.session.query(AppDatasetJoin).filter(AppDatasetJoin.dataset_id == dataset_id).delete()        db.session.commit()        end_at = time.perf_counter()        logging.info(            click.style('Cleaned dataset when dataset deleted: {} latency: {}'.format(dataset_id, end_at - start_at), fg='green'))    except Exception:        logging.exception("Cleaned dataset when dataset deleted failed")
 |