| 1234567891011121314151617181920212223242526272829303132333435363738394041 | from flask import current_appfrom langchain.embeddings import OpenAIEmbeddingsfrom core.embedding.cached_embedding import CacheEmbeddingfrom core.index.keyword_table_index.keyword_table_index import KeywordTableIndex, KeywordTableConfigfrom core.index.vector_index.vector_index import VectorIndexfrom core.llm.llm_builder import LLMBuilderfrom models.dataset import Datasetclass IndexBuilder:    @classmethod    def get_index(cls, dataset: Dataset, indexing_technique: str, ignore_high_quality_check: bool = False):        if indexing_technique == "high_quality":            if not ignore_high_quality_check and dataset.indexing_technique != 'high_quality':                return None            model_credentials = LLMBuilder.get_model_credentials(                tenant_id=dataset.tenant_id,                model_provider=LLMBuilder.get_default_provider(dataset.tenant_id, 'text-embedding-ada-002'),                model_name='text-embedding-ada-002'            )            embeddings = CacheEmbedding(OpenAIEmbeddings(                **model_credentials            ))            return VectorIndex(                dataset=dataset,                config=current_app.config,                embeddings=embeddings            )        elif indexing_technique == "economy":            return KeywordTableIndex(                dataset=dataset,                config=KeywordTableConfig(                    max_keywords_per_chunk=10                )            )        else:            raise ValueError('Unknown indexing technique')
 |