| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418 | 
							- import concurrent
 
- import json
 
- import logging
 
- from concurrent.futures import ThreadPoolExecutor
 
- from typing import Optional, List, Union, Tuple
 
- from flask import current_app, Flask
 
- from requests.exceptions import ChunkedEncodingError
 
- from core.agent.agent_executor import AgentExecuteResult, PlanningStrategy
 
- from core.callback_handler.main_chain_gather_callback_handler import MainChainGatherCallbackHandler
 
- from core.callback_handler.llm_callback_handler import LLMCallbackHandler
 
- from core.conversation_message_task import ConversationMessageTask, ConversationTaskStoppedException, \
 
-     ConversationTaskInterruptException
 
- from core.external_data_tool.factory import ExternalDataToolFactory
 
- from core.file.file_obj import FileObj
 
- from core.model_providers.error import LLMBadRequestError
 
- from core.memory.read_only_conversation_token_db_buffer_shared_memory import \
 
-     ReadOnlyConversationTokenDBBufferSharedMemory
 
- from core.model_providers.model_factory import ModelFactory
 
- from core.model_providers.models.entity.message import PromptMessage, PromptMessageFile
 
- from core.model_providers.models.llm.base import BaseLLM
 
- from core.orchestrator_rule_parser import OrchestratorRuleParser
 
- from core.prompt.prompt_template import PromptTemplateParser
 
- from core.prompt.prompt_transform import PromptTransform
 
- from models.model import App, AppModelConfig, Account, Conversation, EndUser
 
- from core.moderation.base import ModerationException, ModerationAction
 
- from core.moderation.factory import ModerationFactory
 
- class Completion:
 
-     @classmethod
 
-     def generate(cls, task_id: str, app: App, app_model_config: AppModelConfig, query: str, inputs: dict,
 
-                  files: List[FileObj], user: Union[Account, EndUser], conversation: Optional[Conversation],
 
-                  streaming: bool, is_override: bool = False, retriever_from: str = 'dev',
 
-                  auto_generate_name: bool = True):
 
-         """
 
-         errors: ProviderTokenNotInitError
 
-         """
 
-         query = PromptTemplateParser.remove_template_variables(query)
 
-         memory = None
 
-         if conversation:
 
-             # get memory of conversation (read-only)
 
-             memory = cls.get_memory_from_conversation(
 
-                 tenant_id=app.tenant_id,
 
-                 app_model_config=app_model_config,
 
-                 conversation=conversation,
 
-                 return_messages=False
 
-             )
 
-             inputs = conversation.inputs
 
-         final_model_instance = ModelFactory.get_text_generation_model_from_model_config(
 
-             tenant_id=app.tenant_id,
 
-             model_config=app_model_config.model_dict,
 
-             streaming=streaming
 
-         )
 
-         conversation_message_task = ConversationMessageTask(
 
-             task_id=task_id,
 
-             app=app,
 
-             app_model_config=app_model_config,
 
-             user=user,
 
-             conversation=conversation,
 
-             is_override=is_override,
 
-             inputs=inputs,
 
-             query=query,
 
-             files=files,
 
-             streaming=streaming,
 
-             model_instance=final_model_instance,
 
-             auto_generate_name=auto_generate_name
 
-         )
 
-         prompt_message_files = [file.prompt_message_file for file in files]
 
-         rest_tokens_for_context_and_memory = cls.get_validate_rest_tokens(
 
-             mode=app.mode,
 
-             model_instance=final_model_instance,
 
-             app_model_config=app_model_config,
 
-             query=query,
 
-             inputs=inputs,
 
-             files=prompt_message_files
 
-         )
 
-         # init orchestrator rule parser
 
-         orchestrator_rule_parser = OrchestratorRuleParser(
 
-             tenant_id=app.tenant_id,
 
-             app_model_config=app_model_config
 
-         )
 
-         try:
 
-             chain_callback = MainChainGatherCallbackHandler(conversation_message_task)
 
-             try:
 
-                 # process sensitive_word_avoidance
 
-                 inputs, query = cls.moderation_for_inputs(app.id, app.tenant_id, app_model_config, inputs, query)
 
-             except ModerationException as e:
 
-                 cls.run_final_llm(
 
-                     model_instance=final_model_instance,
 
-                     mode=app.mode,
 
-                     app_model_config=app_model_config,
 
-                     query=query,
 
-                     inputs=inputs,
 
-                     files=prompt_message_files,
 
-                     agent_execute_result=None,
 
-                     conversation_message_task=conversation_message_task,
 
-                     memory=memory,
 
-                     fake_response=str(e)
 
-                 )
 
-                 return
 
-             # fill in variable inputs from external data tools if exists
 
-             external_data_tools = app_model_config.external_data_tools_list
 
-             if external_data_tools:
 
-                 inputs = cls.fill_in_inputs_from_external_data_tools(
 
-                     tenant_id=app.tenant_id,
 
-                     app_id=app.id,
 
-                     external_data_tools=external_data_tools,
 
-                     inputs=inputs,
 
-                     query=query
 
-                 )
 
-             # get agent executor
 
-             agent_executor = orchestrator_rule_parser.to_agent_executor(
 
-                 conversation_message_task=conversation_message_task,
 
-                 memory=memory,
 
-                 rest_tokens=rest_tokens_for_context_and_memory,
 
-                 chain_callback=chain_callback,
 
-                 tenant_id=app.tenant_id,
 
-                 retriever_from=retriever_from
 
-             )
 
-             query_for_agent = cls.get_query_for_agent(app, app_model_config, query, inputs)
 
-             # run agent executor
 
-             agent_execute_result = None
 
-             if query_for_agent and agent_executor:
 
-                 should_use_agent = agent_executor.should_use_agent(query_for_agent)
 
-                 if should_use_agent:
 
-                     agent_execute_result = agent_executor.run(query_for_agent)
 
-             # When no extra pre prompt is specified,
 
-             # the output of the agent can be used directly as the main output content without calling LLM again
 
-             fake_response = None
 
-             if not app_model_config.pre_prompt and agent_execute_result and agent_execute_result.output \
 
-                     and agent_execute_result.strategy not in [PlanningStrategy.ROUTER,
 
-                                                               PlanningStrategy.REACT_ROUTER]:
 
-                 fake_response = agent_execute_result.output
 
-             # run the final llm
 
-             cls.run_final_llm(
 
-                 model_instance=final_model_instance,
 
-                 mode=app.mode,
 
-                 app_model_config=app_model_config,
 
-                 query=query,
 
-                 inputs=inputs,
 
-                 files=prompt_message_files,
 
-                 agent_execute_result=agent_execute_result,
 
-                 conversation_message_task=conversation_message_task,
 
-                 memory=memory,
 
-                 fake_response=fake_response
 
-             )
 
-         except (ConversationTaskInterruptException, ConversationTaskStoppedException):
 
-             return
 
-         except ChunkedEncodingError as e:
 
-             # Interrupt by LLM (like OpenAI), handle it.
 
-             logging.warning(f'ChunkedEncodingError: {e}')
 
-             conversation_message_task.end()
 
-             return
 
-     @classmethod
 
-     def moderation_for_inputs(cls, app_id: str, tenant_id: str, app_model_config: AppModelConfig, inputs: dict, query: str):
 
-         if not app_model_config.sensitive_word_avoidance_dict['enabled']:
 
-             return inputs, query
 
-         type = app_model_config.sensitive_word_avoidance_dict['type']
 
-         moderation = ModerationFactory(type, app_id, tenant_id, app_model_config.sensitive_word_avoidance_dict['config'])
 
-         moderation_result = moderation.moderation_for_inputs(inputs, query)
 
-         if not moderation_result.flagged:
 
-             return inputs, query
 
-         if moderation_result.action == ModerationAction.DIRECT_OUTPUT:
 
-             raise ModerationException(moderation_result.preset_response)
 
-         elif moderation_result.action == ModerationAction.OVERRIDED:
 
-             inputs = moderation_result.inputs
 
-             query = moderation_result.query
 
-         return inputs, query
 
-     @classmethod
 
-     def fill_in_inputs_from_external_data_tools(cls, tenant_id: str, app_id: str, external_data_tools: list[dict],
 
-                                                 inputs: dict, query: str) -> dict:
 
-         """
 
-         Fill in variable inputs from external data tools if exists.
 
-         :param tenant_id: workspace id
 
-         :param app_id: app id
 
-         :param external_data_tools: external data tools configs
 
-         :param inputs: the inputs
 
-         :param query: the query
 
-         :return: the filled inputs
 
-         """
 
-         # Group tools by type and config
 
-         grouped_tools = {}
 
-         for tool in external_data_tools:
 
-             if not tool.get("enabled"):
 
-                 continue
 
-             tool_key = (tool.get("type"), json.dumps(tool.get("config"), sort_keys=True))
 
-             grouped_tools.setdefault(tool_key, []).append(tool)
 
-         results = {}
 
-         with ThreadPoolExecutor() as executor:
 
-             futures = {}
 
-             for tool in external_data_tools:
 
-                 if not tool.get("enabled"):
 
-                     continue
 
-                 future = executor.submit(
 
-                     cls.query_external_data_tool, current_app._get_current_object(), tenant_id, app_id, tool,
 
-                     inputs, query
 
-                 )
 
-                 futures[future] = tool
 
-             for future in concurrent.futures.as_completed(futures):
 
-                 tool_variable, result = future.result()
 
-                 results[tool_variable] = result
 
-         inputs.update(results)
 
-         return inputs
 
-     @classmethod
 
-     def query_external_data_tool(cls, flask_app: Flask, tenant_id: str, app_id: str, external_data_tool: dict,
 
-                                  inputs: dict, query: str) -> Tuple[Optional[str], Optional[str]]:
 
-         with flask_app.app_context():
 
-             tool_variable = external_data_tool.get("variable")
 
-             tool_type = external_data_tool.get("type")
 
-             tool_config = external_data_tool.get("config")
 
-             external_data_tool_factory = ExternalDataToolFactory(
 
-                 name=tool_type,
 
-                 tenant_id=tenant_id,
 
-                 app_id=app_id,
 
-                 variable=tool_variable,
 
-                 config=tool_config
 
-             )
 
-             # query external data tool
 
-             result = external_data_tool_factory.query(
 
-                 inputs=inputs,
 
-                 query=query
 
-             )
 
-             return tool_variable, result
 
-     @classmethod
 
-     def get_query_for_agent(cls, app: App, app_model_config: AppModelConfig, query: str, inputs: dict) -> str:
 
-         if app.mode != 'completion':
 
-             return query
 
-         return inputs.get(app_model_config.dataset_query_variable, "")
 
-     @classmethod
 
-     def run_final_llm(cls, model_instance: BaseLLM, mode: str, app_model_config: AppModelConfig, query: str,
 
-                       inputs: dict,
 
-                       files: List[PromptMessageFile],
 
-                       agent_execute_result: Optional[AgentExecuteResult],
 
-                       conversation_message_task: ConversationMessageTask,
 
-                       memory: Optional[ReadOnlyConversationTokenDBBufferSharedMemory],
 
-                       fake_response: Optional[str]):
 
-         prompt_transform = PromptTransform()
 
-         # get llm prompt
 
-         if app_model_config.prompt_type == 'simple':
 
-             prompt_messages, stop_words = prompt_transform.get_prompt(
 
-                 app_mode=mode,
 
-                 pre_prompt=app_model_config.pre_prompt,
 
-                 inputs=inputs,
 
-                 query=query,
 
-                 files=files,
 
-                 context=agent_execute_result.output if agent_execute_result else None,
 
-                 memory=memory,
 
-                 model_instance=model_instance
 
-             )
 
-         else:
 
-             prompt_messages = prompt_transform.get_advanced_prompt(
 
-                 app_mode=mode,
 
-                 app_model_config=app_model_config,
 
-                 inputs=inputs,
 
-                 query=query,
 
-                 files=files,
 
-                 context=agent_execute_result.output if agent_execute_result else None,
 
-                 memory=memory,
 
-                 model_instance=model_instance
 
-             )
 
-             model_config = app_model_config.model_dict
 
-             completion_params = model_config.get("completion_params", {})
 
-             stop_words = completion_params.get("stop", [])
 
-         cls.recale_llm_max_tokens(
 
-             model_instance=model_instance,
 
-             prompt_messages=prompt_messages,
 
-         )
 
-         response = model_instance.run(
 
-             messages=prompt_messages,
 
-             stop=stop_words if stop_words else None,
 
-             callbacks=[LLMCallbackHandler(model_instance, conversation_message_task)],
 
-             fake_response=fake_response
 
-         )
 
-         return response
 
-     @classmethod
 
-     def get_history_messages_from_memory(cls, memory: ReadOnlyConversationTokenDBBufferSharedMemory,
 
-                                          max_token_limit: int) -> str:
 
-         """Get memory messages."""
 
-         memory.max_token_limit = max_token_limit
 
-         memory_key = memory.memory_variables[0]
 
-         external_context = memory.load_memory_variables({})
 
-         return external_context[memory_key]
 
-     @classmethod
 
-     def get_memory_from_conversation(cls, tenant_id: str, app_model_config: AppModelConfig,
 
-                                      conversation: Conversation,
 
-                                      **kwargs) -> ReadOnlyConversationTokenDBBufferSharedMemory:
 
-         # only for calc token in memory
 
-         memory_model_instance = ModelFactory.get_text_generation_model_from_model_config(
 
-             tenant_id=tenant_id,
 
-             model_config=app_model_config.model_dict
 
-         )
 
-         # use llm config from conversation
 
-         memory = ReadOnlyConversationTokenDBBufferSharedMemory(
 
-             conversation=conversation,
 
-             model_instance=memory_model_instance,
 
-             max_token_limit=kwargs.get("max_token_limit", 2048),
 
-             memory_key=kwargs.get("memory_key", "chat_history"),
 
-             return_messages=kwargs.get("return_messages", True),
 
-             input_key=kwargs.get("input_key", "input"),
 
-             output_key=kwargs.get("output_key", "output"),
 
-             message_limit=kwargs.get("message_limit", 10),
 
-         )
 
-         return memory
 
-     @classmethod
 
-     def get_validate_rest_tokens(cls, mode: str, model_instance: BaseLLM, app_model_config: AppModelConfig,
 
-                                  query: str, inputs: dict, files: List[PromptMessageFile]) -> int:
 
-         model_limited_tokens = model_instance.model_rules.max_tokens.max
 
-         max_tokens = model_instance.get_model_kwargs().max_tokens
 
-         if model_limited_tokens is None:
 
-             return -1
 
-         if max_tokens is None:
 
-             max_tokens = 0
 
-         prompt_transform = PromptTransform()
 
-         # get prompt without memory and context
 
-         if app_model_config.prompt_type == 'simple':
 
-             prompt_messages, _ = prompt_transform.get_prompt(
 
-                 app_mode=mode,
 
-                 pre_prompt=app_model_config.pre_prompt,
 
-                 inputs=inputs,
 
-                 query=query,
 
-                 files=files,
 
-                 context=None,
 
-                 memory=None,
 
-                 model_instance=model_instance
 
-             )
 
-         else:
 
-             prompt_messages = prompt_transform.get_advanced_prompt(
 
-                 app_mode=mode,
 
-                 app_model_config=app_model_config,
 
-                 inputs=inputs,
 
-                 query=query,
 
-                 files=files,
 
-                 context=None,
 
-                 memory=None,
 
-                 model_instance=model_instance
 
-             )
 
-         prompt_tokens = model_instance.get_num_tokens(prompt_messages)
 
-         rest_tokens = model_limited_tokens - max_tokens - prompt_tokens
 
-         if rest_tokens < 0:
 
-             raise LLMBadRequestError("Query or prefix prompt is too long, you can reduce the prefix prompt, "
 
-                                      "or shrink the max token, or switch to a llm with a larger token limit size.")
 
-         return rest_tokens
 
-     @classmethod
 
-     def recale_llm_max_tokens(cls, model_instance: BaseLLM, prompt_messages: List[PromptMessage]):
 
-         # recalc max_tokens if sum(prompt_token +  max_tokens) over model token limit
 
-         model_limited_tokens = model_instance.model_rules.max_tokens.max
 
-         max_tokens = model_instance.get_model_kwargs().max_tokens
 
-         if model_limited_tokens is None:
 
-             return
 
-         if max_tokens is None:
 
-             max_tokens = 0
 
-         prompt_tokens = model_instance.get_num_tokens(prompt_messages)
 
-         if prompt_tokens + max_tokens > model_limited_tokens:
 
-             max_tokens = max(model_limited_tokens - prompt_tokens, 16)
 
-             # update model instance max tokens
 
-             model_kwargs = model_instance.get_model_kwargs()
 
-             model_kwargs.max_tokens = max_tokens
 
-             model_instance.set_model_kwargs(model_kwargs)
 
 
  |