| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182 | 
							- from flask import request
 
- from flask_restful import reqparse, marshal
 
- import services.dataset_service
 
- from controllers.service_api import api
 
- from controllers.service_api.dataset.error import DatasetNameDuplicateError
 
- from controllers.service_api.wraps import DatasetApiResource
 
- from libs.login import current_user
 
- from core.model_providers.models.entity.model_params import ModelType
 
- from fields.dataset_fields import dataset_detail_fields
 
- from services.dataset_service import DatasetService
 
- from services.provider_service import ProviderService
 
- def _validate_name(name):
 
-     if not name or len(name) < 1 or len(name) > 40:
 
-         raise ValueError('Name must be between 1 to 40 characters.')
 
-     return name
 
- class DatasetApi(DatasetApiResource):
 
-     """Resource for get datasets."""
 
-     def get(self, tenant_id):
 
-         page = request.args.get('page', default=1, type=int)
 
-         limit = request.args.get('limit', default=20, type=int)
 
-         provider = request.args.get('provider', default="vendor")
 
-         datasets, total = DatasetService.get_datasets(page, limit, provider,
 
-                                                       tenant_id, current_user)
 
-         # check embedding setting
 
-         provider_service = ProviderService()
 
-         valid_model_list = provider_service.get_valid_model_list(current_user.current_tenant_id,
 
-                                                                  ModelType.EMBEDDINGS.value)
 
-         model_names = []
 
-         for valid_model in valid_model_list:
 
-             model_names.append(f"{valid_model['model_name']}:{valid_model['model_provider']['provider_name']}")
 
-         data = marshal(datasets, dataset_detail_fields)
 
-         for item in data:
 
-             if item['indexing_technique'] == 'high_quality':
 
-                 item_model = f"{item['embedding_model']}:{item['embedding_model_provider']}"
 
-                 if item_model in model_names:
 
-                     item['embedding_available'] = True
 
-                 else:
 
-                     item['embedding_available'] = False
 
-             else:
 
-                 item['embedding_available'] = True
 
-         response = {
 
-             'data': data,
 
-             'has_more': len(datasets) == limit,
 
-             'limit': limit,
 
-             'total': total,
 
-             'page': page
 
-         }
 
-         return response, 200
 
-     """Resource for datasets."""
 
-     def post(self, tenant_id):
 
-         parser = reqparse.RequestParser()
 
-         parser.add_argument('name', nullable=False, required=True,
 
-                             help='type is required. Name must be between 1 to 40 characters.',
 
-                             type=_validate_name)
 
-         parser.add_argument('indexing_technique', type=str, location='json',
 
-                             choices=('high_quality', 'economy'),
 
-                             help='Invalid indexing technique.')
 
-         args = parser.parse_args()
 
-         try:
 
-             dataset = DatasetService.create_empty_dataset(
 
-                 tenant_id=tenant_id,
 
-                 name=args['name'],
 
-                 indexing_technique=args['indexing_technique'],
 
-                 account=current_user
 
-             )
 
-         except services.errors.dataset.DatasetNameDuplicateError:
 
-             raise DatasetNameDuplicateError()
 
-         return marshal(dataset, dataset_detail_fields), 200
 
- api.add_resource(DatasetApi, '/datasets')
 
 
  |