base_app_runner.py 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427
  1. import time
  2. from collections.abc import Generator, Mapping
  3. from typing import TYPE_CHECKING, Any, Optional, Union
  4. from core.app.app_config.entities import ExternalDataVariableEntity, PromptTemplateEntity
  5. from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
  6. from core.app.entities.app_invoke_entities import (
  7. AppGenerateEntity,
  8. EasyUIBasedAppGenerateEntity,
  9. InvokeFrom,
  10. ModelConfigWithCredentialsEntity,
  11. )
  12. from core.app.entities.queue_entities import QueueAgentMessageEvent, QueueLLMChunkEvent, QueueMessageEndEvent
  13. from core.app.features.annotation_reply.annotation_reply import AnnotationReplyFeature
  14. from core.app.features.hosting_moderation.hosting_moderation import HostingModerationFeature
  15. from core.external_data_tool.external_data_fetch import ExternalDataFetch
  16. from core.memory.token_buffer_memory import TokenBufferMemory
  17. from core.model_manager import ModelInstance
  18. from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
  19. from core.model_runtime.entities.message_entities import AssistantPromptMessage, PromptMessage
  20. from core.model_runtime.entities.model_entities import ModelPropertyKey
  21. from core.model_runtime.errors.invoke import InvokeBadRequestError
  22. from core.moderation.input_moderation import InputModeration
  23. from core.prompt.advanced_prompt_transform import AdvancedPromptTransform
  24. from core.prompt.entities.advanced_prompt_entities import ChatModelMessage, CompletionModelPromptTemplate, MemoryConfig
  25. from core.prompt.simple_prompt_transform import ModelMode, SimplePromptTransform
  26. from models.model import App, AppMode, Message, MessageAnnotation
  27. if TYPE_CHECKING:
  28. from core.file.models import File
  29. class AppRunner:
  30. def get_pre_calculate_rest_tokens(
  31. self,
  32. app_record: App,
  33. model_config: ModelConfigWithCredentialsEntity,
  34. prompt_template_entity: PromptTemplateEntity,
  35. inputs: dict[str, str],
  36. files: list["File"],
  37. query: Optional[str] = None,
  38. ) -> int:
  39. """
  40. Get pre calculate rest tokens
  41. :param app_record: app record
  42. :param model_config: model config entity
  43. :param prompt_template_entity: prompt template entity
  44. :param inputs: inputs
  45. :param files: files
  46. :param query: query
  47. :return:
  48. """
  49. # Invoke model
  50. model_instance = ModelInstance(
  51. provider_model_bundle=model_config.provider_model_bundle, model=model_config.model
  52. )
  53. model_context_tokens = model_config.model_schema.model_properties.get(ModelPropertyKey.CONTEXT_SIZE)
  54. max_tokens = 0
  55. for parameter_rule in model_config.model_schema.parameter_rules:
  56. if parameter_rule.name == "max_tokens" or (
  57. parameter_rule.use_template and parameter_rule.use_template == "max_tokens"
  58. ):
  59. max_tokens = (
  60. model_config.parameters.get(parameter_rule.name)
  61. or model_config.parameters.get(parameter_rule.use_template)
  62. ) or 0
  63. if model_context_tokens is None:
  64. return -1
  65. if max_tokens is None:
  66. max_tokens = 0
  67. # get prompt messages without memory and context
  68. prompt_messages, stop = self.organize_prompt_messages(
  69. app_record=app_record,
  70. model_config=model_config,
  71. prompt_template_entity=prompt_template_entity,
  72. inputs=inputs,
  73. files=files,
  74. query=query,
  75. )
  76. prompt_tokens = model_instance.get_llm_num_tokens(prompt_messages)
  77. rest_tokens = model_context_tokens - max_tokens - prompt_tokens
  78. if rest_tokens < 0:
  79. raise InvokeBadRequestError(
  80. "Query or prefix prompt is too long, you can reduce the prefix prompt, "
  81. "or shrink the max token, or switch to a llm with a larger token limit size."
  82. )
  83. return rest_tokens
  84. def recalc_llm_max_tokens(
  85. self, model_config: ModelConfigWithCredentialsEntity, prompt_messages: list[PromptMessage]
  86. ):
  87. # recalc max_tokens if sum(prompt_token + max_tokens) over model token limit
  88. model_instance = ModelInstance(
  89. provider_model_bundle=model_config.provider_model_bundle, model=model_config.model
  90. )
  91. model_context_tokens = model_config.model_schema.model_properties.get(ModelPropertyKey.CONTEXT_SIZE)
  92. max_tokens = 0
  93. for parameter_rule in model_config.model_schema.parameter_rules:
  94. if parameter_rule.name == "max_tokens" or (
  95. parameter_rule.use_template and parameter_rule.use_template == "max_tokens"
  96. ):
  97. max_tokens = (
  98. model_config.parameters.get(parameter_rule.name)
  99. or model_config.parameters.get(parameter_rule.use_template)
  100. ) or 0
  101. if model_context_tokens is None:
  102. return -1
  103. if max_tokens is None:
  104. max_tokens = 0
  105. prompt_tokens = model_instance.get_llm_num_tokens(prompt_messages)
  106. if prompt_tokens + max_tokens > model_context_tokens:
  107. max_tokens = max(model_context_tokens - prompt_tokens, 16)
  108. for parameter_rule in model_config.model_schema.parameter_rules:
  109. if parameter_rule.name == "max_tokens" or (
  110. parameter_rule.use_template and parameter_rule.use_template == "max_tokens"
  111. ):
  112. model_config.parameters[parameter_rule.name] = max_tokens
  113. def organize_prompt_messages(
  114. self,
  115. app_record: App,
  116. model_config: ModelConfigWithCredentialsEntity,
  117. prompt_template_entity: PromptTemplateEntity,
  118. inputs: dict[str, str],
  119. files: list["File"],
  120. query: Optional[str] = None,
  121. context: Optional[str] = None,
  122. memory: Optional[TokenBufferMemory] = None,
  123. ) -> tuple[list[PromptMessage], Optional[list[str]]]:
  124. """
  125. Organize prompt messages
  126. :param context:
  127. :param app_record: app record
  128. :param model_config: model config entity
  129. :param prompt_template_entity: prompt template entity
  130. :param inputs: inputs
  131. :param files: files
  132. :param query: query
  133. :param memory: memory
  134. :return:
  135. """
  136. # get prompt without memory and context
  137. if prompt_template_entity.prompt_type == PromptTemplateEntity.PromptType.SIMPLE:
  138. prompt_transform = SimplePromptTransform()
  139. prompt_messages, stop = prompt_transform.get_prompt(
  140. app_mode=AppMode.value_of(app_record.mode),
  141. prompt_template_entity=prompt_template_entity,
  142. inputs=inputs,
  143. query=query or "",
  144. files=files,
  145. context=context,
  146. memory=memory,
  147. model_config=model_config,
  148. )
  149. else:
  150. memory_config = MemoryConfig(window=MemoryConfig.WindowConfig(enabled=False))
  151. model_mode = ModelMode.value_of(model_config.mode)
  152. if model_mode == ModelMode.COMPLETION:
  153. advanced_completion_prompt_template = prompt_template_entity.advanced_completion_prompt_template
  154. prompt_template = CompletionModelPromptTemplate(text=advanced_completion_prompt_template.prompt)
  155. if advanced_completion_prompt_template.role_prefix:
  156. memory_config.role_prefix = MemoryConfig.RolePrefix(
  157. user=advanced_completion_prompt_template.role_prefix.user,
  158. assistant=advanced_completion_prompt_template.role_prefix.assistant,
  159. )
  160. else:
  161. prompt_template = []
  162. for message in prompt_template_entity.advanced_chat_prompt_template.messages:
  163. prompt_template.append(ChatModelMessage(text=message.text, role=message.role))
  164. prompt_transform = AdvancedPromptTransform()
  165. prompt_messages = prompt_transform.get_prompt(
  166. prompt_template=prompt_template,
  167. inputs=inputs,
  168. query=query or "",
  169. files=files,
  170. context=context,
  171. memory_config=memory_config,
  172. memory=memory,
  173. model_config=model_config,
  174. )
  175. stop = model_config.stop
  176. return prompt_messages, stop
  177. def direct_output(
  178. self,
  179. queue_manager: AppQueueManager,
  180. app_generate_entity: EasyUIBasedAppGenerateEntity,
  181. prompt_messages: list,
  182. text: str,
  183. stream: bool,
  184. usage: Optional[LLMUsage] = None,
  185. ) -> None:
  186. """
  187. Direct output
  188. :param queue_manager: application queue manager
  189. :param app_generate_entity: app generate entity
  190. :param prompt_messages: prompt messages
  191. :param text: text
  192. :param stream: stream
  193. :param usage: usage
  194. :return:
  195. """
  196. if stream:
  197. index = 0
  198. for token in text:
  199. chunk = LLMResultChunk(
  200. model=app_generate_entity.model_conf.model,
  201. prompt_messages=prompt_messages,
  202. delta=LLMResultChunkDelta(index=index, message=AssistantPromptMessage(content=token)),
  203. )
  204. queue_manager.publish(QueueLLMChunkEvent(chunk=chunk), PublishFrom.APPLICATION_MANAGER)
  205. index += 1
  206. time.sleep(0.01)
  207. queue_manager.publish(
  208. QueueMessageEndEvent(
  209. llm_result=LLMResult(
  210. model=app_generate_entity.model_conf.model,
  211. prompt_messages=prompt_messages,
  212. message=AssistantPromptMessage(content=text),
  213. usage=usage or LLMUsage.empty_usage(),
  214. ),
  215. ),
  216. PublishFrom.APPLICATION_MANAGER,
  217. )
  218. def _handle_invoke_result(
  219. self,
  220. invoke_result: Union[LLMResult, Generator],
  221. queue_manager: AppQueueManager,
  222. stream: bool,
  223. agent: bool = False,
  224. ) -> None:
  225. """
  226. Handle invoke result
  227. :param invoke_result: invoke result
  228. :param queue_manager: application queue manager
  229. :param stream: stream
  230. :param agent: agent
  231. :return:
  232. """
  233. if not stream:
  234. self._handle_invoke_result_direct(invoke_result=invoke_result, queue_manager=queue_manager, agent=agent)
  235. else:
  236. self._handle_invoke_result_stream(invoke_result=invoke_result, queue_manager=queue_manager, agent=agent)
  237. def _handle_invoke_result_direct(
  238. self, invoke_result: LLMResult, queue_manager: AppQueueManager, agent: bool
  239. ) -> None:
  240. """
  241. Handle invoke result direct
  242. :param invoke_result: invoke result
  243. :param queue_manager: application queue manager
  244. :param agent: agent
  245. :return:
  246. """
  247. queue_manager.publish(
  248. QueueMessageEndEvent(
  249. llm_result=invoke_result,
  250. ),
  251. PublishFrom.APPLICATION_MANAGER,
  252. )
  253. def _handle_invoke_result_stream(
  254. self, invoke_result: Generator, queue_manager: AppQueueManager, agent: bool
  255. ) -> None:
  256. """
  257. Handle invoke result
  258. :param invoke_result: invoke result
  259. :param queue_manager: application queue manager
  260. :param agent: agent
  261. :return:
  262. """
  263. model = None
  264. prompt_messages = []
  265. text = ""
  266. usage = None
  267. for result in invoke_result:
  268. if not agent:
  269. queue_manager.publish(QueueLLMChunkEvent(chunk=result), PublishFrom.APPLICATION_MANAGER)
  270. else:
  271. queue_manager.publish(QueueAgentMessageEvent(chunk=result), PublishFrom.APPLICATION_MANAGER)
  272. text += result.delta.message.content
  273. if not model:
  274. model = result.model
  275. if not prompt_messages:
  276. prompt_messages = result.prompt_messages
  277. if result.delta.usage:
  278. usage = result.delta.usage
  279. if not usage:
  280. usage = LLMUsage.empty_usage()
  281. llm_result = LLMResult(
  282. model=model, prompt_messages=prompt_messages, message=AssistantPromptMessage(content=text), usage=usage
  283. )
  284. queue_manager.publish(
  285. QueueMessageEndEvent(
  286. llm_result=llm_result,
  287. ),
  288. PublishFrom.APPLICATION_MANAGER,
  289. )
  290. def moderation_for_inputs(
  291. self,
  292. app_id: str,
  293. tenant_id: str,
  294. app_generate_entity: AppGenerateEntity,
  295. inputs: Mapping[str, Any],
  296. query: str,
  297. message_id: str,
  298. ) -> tuple[bool, dict, str]:
  299. """
  300. Process sensitive_word_avoidance.
  301. :param app_id: app id
  302. :param tenant_id: tenant id
  303. :param app_generate_entity: app generate entity
  304. :param inputs: inputs
  305. :param query: query
  306. :param message_id: message id
  307. :return:
  308. """
  309. moderation_feature = InputModeration()
  310. return moderation_feature.check(
  311. app_id=app_id,
  312. tenant_id=tenant_id,
  313. app_config=app_generate_entity.app_config,
  314. inputs=inputs,
  315. query=query or "",
  316. message_id=message_id,
  317. trace_manager=app_generate_entity.trace_manager,
  318. )
  319. def check_hosting_moderation(
  320. self,
  321. application_generate_entity: EasyUIBasedAppGenerateEntity,
  322. queue_manager: AppQueueManager,
  323. prompt_messages: list[PromptMessage],
  324. ) -> bool:
  325. """
  326. Check hosting moderation
  327. :param application_generate_entity: application generate entity
  328. :param queue_manager: queue manager
  329. :param prompt_messages: prompt messages
  330. :return:
  331. """
  332. hosting_moderation_feature = HostingModerationFeature()
  333. moderation_result = hosting_moderation_feature.check(
  334. application_generate_entity=application_generate_entity, prompt_messages=prompt_messages
  335. )
  336. if moderation_result:
  337. self.direct_output(
  338. queue_manager=queue_manager,
  339. app_generate_entity=application_generate_entity,
  340. prompt_messages=prompt_messages,
  341. text="I apologize for any confusion, but I'm an AI assistant to be helpful, harmless, and honest.",
  342. stream=application_generate_entity.stream,
  343. )
  344. return moderation_result
  345. def fill_in_inputs_from_external_data_tools(
  346. self,
  347. tenant_id: str,
  348. app_id: str,
  349. external_data_tools: list[ExternalDataVariableEntity],
  350. inputs: dict,
  351. query: str,
  352. ) -> dict:
  353. """
  354. Fill in variable inputs from external data tools if exists.
  355. :param tenant_id: workspace id
  356. :param app_id: app id
  357. :param external_data_tools: external data tools configs
  358. :param inputs: the inputs
  359. :param query: the query
  360. :return: the filled inputs
  361. """
  362. external_data_fetch_feature = ExternalDataFetch()
  363. return external_data_fetch_feature.fetch(
  364. tenant_id=tenant_id, app_id=app_id, external_data_tools=external_data_tools, inputs=inputs, query=query
  365. )
  366. def query_app_annotations_to_reply(
  367. self, app_record: App, message: Message, query: str, user_id: str, invoke_from: InvokeFrom
  368. ) -> Optional[MessageAnnotation]:
  369. """
  370. Query app annotations to reply
  371. :param app_record: app record
  372. :param message: message
  373. :param query: query
  374. :param user_id: user id
  375. :param invoke_from: invoke from
  376. :return:
  377. """
  378. annotation_reply_feature = AnnotationReplyFeature()
  379. return annotation_reply_feature.query(
  380. app_record=app_record, message=message, query=query, user_id=user_id, invoke_from=invoke_from
  381. )