cot_agent_runner.py 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424
  1. import json
  2. from abc import ABC, abstractmethod
  3. from collections.abc import Generator, Mapping, Sequence
  4. from typing import Optional, Union
  5. from core.agent.base_agent_runner import BaseAgentRunner
  6. from core.agent.entities import AgentScratchpadUnit
  7. from core.agent.output_parser.cot_output_parser import CotAgentOutputParser
  8. from core.app.apps.base_app_queue_manager import PublishFrom
  9. from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent
  10. from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
  11. from core.model_runtime.entities.message_entities import (
  12. AssistantPromptMessage,
  13. PromptMessage,
  14. PromptMessageTool,
  15. ToolPromptMessage,
  16. UserPromptMessage,
  17. )
  18. from core.ops.ops_trace_manager import TraceQueueManager
  19. from core.prompt.agent_history_prompt_transform import AgentHistoryPromptTransform
  20. from core.tools.__base.tool import Tool
  21. from core.tools.entities.tool_entities import ToolInvokeMeta
  22. from core.tools.tool_engine import ToolEngine
  23. from models.model import Message
  24. class CotAgentRunner(BaseAgentRunner, ABC):
  25. _is_first_iteration = True
  26. _ignore_observation_providers = ["wenxin"]
  27. _historic_prompt_messages: list[PromptMessage]
  28. _agent_scratchpad: list[AgentScratchpadUnit]
  29. _instruction: str
  30. _query: str
  31. _prompt_messages_tools: Sequence[PromptMessageTool]
  32. def run(
  33. self,
  34. message: Message,
  35. query: str,
  36. inputs: dict[str, str],
  37. ) -> Union[Generator, LLMResult]:
  38. """
  39. Run Cot agent application
  40. """
  41. app_generate_entity = self.application_generate_entity
  42. self._repack_app_generate_entity(app_generate_entity)
  43. self._init_react_state(query)
  44. trace_manager = app_generate_entity.trace_manager
  45. # check model mode
  46. if "Observation" not in app_generate_entity.model_conf.stop:
  47. if app_generate_entity.model_conf.provider not in self._ignore_observation_providers:
  48. app_generate_entity.model_conf.stop.append("Observation")
  49. app_config = self.app_config
  50. assert app_config.agent
  51. # init instruction
  52. inputs = inputs or {}
  53. instruction = app_config.prompt_template.simple_prompt_template or ""
  54. self._instruction = self._fill_in_inputs_from_external_data_tools(instruction, inputs)
  55. iteration_step = 1
  56. max_iteration_steps = min(app_config.agent.max_iteration, 5) + 1
  57. # convert tools into ModelRuntime Tool format
  58. tool_instances, prompt_messages_tools = self._init_prompt_tools()
  59. self._prompt_messages_tools = prompt_messages_tools
  60. function_call_state = True
  61. llm_usage: dict[str, Optional[LLMUsage]] = {"usage": None}
  62. final_answer = ""
  63. def increase_usage(final_llm_usage_dict: dict[str, Optional[LLMUsage]], usage: LLMUsage):
  64. if not final_llm_usage_dict["usage"]:
  65. final_llm_usage_dict["usage"] = usage
  66. else:
  67. llm_usage = final_llm_usage_dict["usage"]
  68. llm_usage.prompt_tokens += usage.prompt_tokens
  69. llm_usage.completion_tokens += usage.completion_tokens
  70. llm_usage.prompt_price += usage.prompt_price
  71. llm_usage.completion_price += usage.completion_price
  72. llm_usage.total_price += usage.total_price
  73. model_instance = self.model_instance
  74. while function_call_state and iteration_step <= max_iteration_steps:
  75. # continue to run until there is not any tool call
  76. function_call_state = False
  77. if iteration_step == max_iteration_steps:
  78. # the last iteration, remove all tools
  79. self._prompt_messages_tools = []
  80. message_file_ids = []
  81. agent_thought = self.create_agent_thought(
  82. message_id=message.id, message="", tool_name="", tool_input="", messages_ids=message_file_ids
  83. )
  84. if iteration_step > 1:
  85. self.queue_manager.publish(
  86. QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
  87. )
  88. # recalc llm max tokens
  89. prompt_messages = self._organize_prompt_messages()
  90. self.recalc_llm_max_tokens(self.model_config, prompt_messages)
  91. # invoke model
  92. chunks: Generator[LLMResultChunk, None, None] = model_instance.invoke_llm(
  93. prompt_messages=prompt_messages,
  94. model_parameters=app_generate_entity.model_conf.parameters,
  95. tools=[],
  96. stop=app_generate_entity.model_conf.stop,
  97. stream=True,
  98. user=self.user_id,
  99. callbacks=[],
  100. )
  101. usage_dict = {}
  102. react_chunks = CotAgentOutputParser.handle_react_stream_output(chunks, usage_dict)
  103. scratchpad = AgentScratchpadUnit(
  104. agent_response="",
  105. thought="",
  106. action_str="",
  107. observation="",
  108. action=None,
  109. )
  110. # publish agent thought if it's first iteration
  111. if iteration_step == 1:
  112. self.queue_manager.publish(
  113. QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
  114. )
  115. for chunk in react_chunks:
  116. if isinstance(chunk, AgentScratchpadUnit.Action):
  117. action = chunk
  118. # detect action
  119. assert scratchpad.agent_response is not None
  120. scratchpad.agent_response += json.dumps(chunk.model_dump())
  121. scratchpad.action_str = json.dumps(chunk.model_dump())
  122. scratchpad.action = action
  123. else:
  124. assert scratchpad.agent_response is not None
  125. scratchpad.agent_response += chunk
  126. assert scratchpad.thought is not None
  127. scratchpad.thought += chunk
  128. yield LLMResultChunk(
  129. model=self.model_config.model,
  130. prompt_messages=prompt_messages,
  131. system_fingerprint="",
  132. delta=LLMResultChunkDelta(index=0, message=AssistantPromptMessage(content=chunk), usage=None),
  133. )
  134. assert scratchpad.thought is not None
  135. scratchpad.thought = scratchpad.thought.strip() or "I am thinking about how to help you"
  136. self._agent_scratchpad.append(scratchpad)
  137. # get llm usage
  138. if "usage" in usage_dict:
  139. increase_usage(llm_usage, usage_dict["usage"])
  140. else:
  141. usage_dict["usage"] = LLMUsage.empty_usage()
  142. self.save_agent_thought(
  143. agent_thought=agent_thought,
  144. tool_name=scratchpad.action.action_name if scratchpad.action else "",
  145. tool_input={scratchpad.action.action_name: scratchpad.action.action_input} if scratchpad.action else {},
  146. tool_invoke_meta={},
  147. thought=scratchpad.thought,
  148. observation="",
  149. answer=scratchpad.agent_response or "",
  150. messages_ids=[],
  151. llm_usage=usage_dict["usage"],
  152. )
  153. if not scratchpad.is_final():
  154. self.queue_manager.publish(
  155. QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
  156. )
  157. if not scratchpad.action:
  158. # failed to extract action, return final answer directly
  159. final_answer = ""
  160. else:
  161. if scratchpad.action.action_name.lower() == "final answer":
  162. # action is final answer, return final answer directly
  163. try:
  164. if isinstance(scratchpad.action.action_input, dict):
  165. final_answer = json.dumps(scratchpad.action.action_input)
  166. elif isinstance(scratchpad.action.action_input, str):
  167. final_answer = scratchpad.action.action_input
  168. else:
  169. final_answer = f"{scratchpad.action.action_input}"
  170. except json.JSONDecodeError:
  171. final_answer = f"{scratchpad.action.action_input}"
  172. else:
  173. function_call_state = True
  174. # action is tool call, invoke tool
  175. tool_invoke_response, tool_invoke_meta = self._handle_invoke_action(
  176. action=scratchpad.action,
  177. tool_instances=tool_instances,
  178. message_file_ids=message_file_ids,
  179. trace_manager=trace_manager,
  180. )
  181. scratchpad.observation = tool_invoke_response
  182. scratchpad.agent_response = tool_invoke_response
  183. self.save_agent_thought(
  184. agent_thought=agent_thought,
  185. tool_name=scratchpad.action.action_name,
  186. tool_input={scratchpad.action.action_name: scratchpad.action.action_input},
  187. thought=scratchpad.thought,
  188. observation={scratchpad.action.action_name: tool_invoke_response},
  189. tool_invoke_meta={scratchpad.action.action_name: tool_invoke_meta.to_dict()},
  190. answer=scratchpad.agent_response,
  191. messages_ids=message_file_ids,
  192. llm_usage=usage_dict["usage"],
  193. )
  194. self.queue_manager.publish(
  195. QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
  196. )
  197. # update prompt tool message
  198. for prompt_tool in self._prompt_messages_tools:
  199. self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)
  200. iteration_step += 1
  201. yield LLMResultChunk(
  202. model=model_instance.model,
  203. prompt_messages=prompt_messages,
  204. delta=LLMResultChunkDelta(
  205. index=0, message=AssistantPromptMessage(content=final_answer), usage=llm_usage["usage"]
  206. ),
  207. system_fingerprint="",
  208. )
  209. # save agent thought
  210. self.save_agent_thought(
  211. agent_thought=agent_thought,
  212. tool_name="",
  213. tool_input={},
  214. tool_invoke_meta={},
  215. thought=final_answer,
  216. observation={},
  217. answer=final_answer,
  218. messages_ids=[],
  219. )
  220. # publish end event
  221. self.queue_manager.publish(
  222. QueueMessageEndEvent(
  223. llm_result=LLMResult(
  224. model=model_instance.model,
  225. prompt_messages=prompt_messages,
  226. message=AssistantPromptMessage(content=final_answer),
  227. usage=llm_usage["usage"] or LLMUsage.empty_usage(),
  228. system_fingerprint="",
  229. )
  230. ),
  231. PublishFrom.APPLICATION_MANAGER,
  232. )
  233. def _handle_invoke_action(
  234. self,
  235. action: AgentScratchpadUnit.Action,
  236. tool_instances: Mapping[str, Tool],
  237. message_file_ids: list[str],
  238. trace_manager: Optional[TraceQueueManager] = None,
  239. ) -> tuple[str, ToolInvokeMeta]:
  240. """
  241. handle invoke action
  242. :param action: action
  243. :param tool_instances: tool instances
  244. :param message_file_ids: message file ids
  245. :param trace_manager: trace manager
  246. :return: observation, meta
  247. """
  248. # action is tool call, invoke tool
  249. tool_call_name = action.action_name
  250. tool_call_args = action.action_input
  251. tool_instance = tool_instances.get(tool_call_name)
  252. if not tool_instance:
  253. answer = f"there is not a tool named {tool_call_name}"
  254. return answer, ToolInvokeMeta.error_instance(answer)
  255. if isinstance(tool_call_args, str):
  256. try:
  257. tool_call_args = json.loads(tool_call_args)
  258. except json.JSONDecodeError:
  259. pass
  260. # invoke tool
  261. tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(
  262. tool=tool_instance,
  263. tool_parameters=tool_call_args,
  264. user_id=self.user_id,
  265. tenant_id=self.tenant_id,
  266. message=self.message,
  267. invoke_from=self.application_generate_entity.invoke_from,
  268. agent_tool_callback=self.agent_callback,
  269. trace_manager=trace_manager,
  270. )
  271. # publish files
  272. for message_file_id in message_files:
  273. # publish message file
  274. self.queue_manager.publish(
  275. QueueMessageFileEvent(message_file_id=message_file_id), PublishFrom.APPLICATION_MANAGER
  276. )
  277. # add message file ids
  278. message_file_ids.append(message_file_id)
  279. return tool_invoke_response, tool_invoke_meta
  280. def _convert_dict_to_action(self, action: dict) -> AgentScratchpadUnit.Action:
  281. """
  282. convert dict to action
  283. """
  284. return AgentScratchpadUnit.Action(action_name=action["action"], action_input=action["action_input"])
  285. def _fill_in_inputs_from_external_data_tools(self, instruction: str, inputs: dict) -> str:
  286. """
  287. fill in inputs from external data tools
  288. """
  289. for key, value in inputs.items():
  290. try:
  291. instruction = instruction.replace(f"{{{{{key}}}}}", str(value))
  292. except Exception as e:
  293. continue
  294. return instruction
  295. def _init_react_state(self, query) -> None:
  296. """
  297. init agent scratchpad
  298. """
  299. self._query = query
  300. self._agent_scratchpad = []
  301. self._historic_prompt_messages = self._organize_historic_prompt_messages()
  302. @abstractmethod
  303. def _organize_prompt_messages(self) -> list[PromptMessage]:
  304. """
  305. organize prompt messages
  306. """
  307. def _format_assistant_message(self, agent_scratchpad: list[AgentScratchpadUnit]) -> str:
  308. """
  309. format assistant message
  310. """
  311. message = ""
  312. for scratchpad in agent_scratchpad:
  313. if scratchpad.is_final():
  314. message += f"Final Answer: {scratchpad.agent_response}"
  315. else:
  316. message += f"Thought: {scratchpad.thought}\n\n"
  317. if scratchpad.action_str:
  318. message += f"Action: {scratchpad.action_str}\n\n"
  319. if scratchpad.observation:
  320. message += f"Observation: {scratchpad.observation}\n\n"
  321. return message
  322. def _organize_historic_prompt_messages(
  323. self, current_session_messages: list[PromptMessage] | None = None
  324. ) -> list[PromptMessage]:
  325. """
  326. organize historic prompt messages
  327. """
  328. result: list[PromptMessage] = []
  329. scratchpads: list[AgentScratchpadUnit] = []
  330. current_scratchpad: AgentScratchpadUnit | None = None
  331. for message in self.history_prompt_messages:
  332. if isinstance(message, AssistantPromptMessage):
  333. if not current_scratchpad:
  334. assert isinstance(message.content, str)
  335. current_scratchpad = AgentScratchpadUnit(
  336. agent_response=message.content,
  337. thought=message.content or "I am thinking about how to help you",
  338. action_str="",
  339. action=None,
  340. observation=None,
  341. )
  342. scratchpads.append(current_scratchpad)
  343. if message.tool_calls:
  344. try:
  345. current_scratchpad.action = AgentScratchpadUnit.Action(
  346. action_name=message.tool_calls[0].function.name,
  347. action_input=json.loads(message.tool_calls[0].function.arguments),
  348. )
  349. current_scratchpad.action_str = json.dumps(current_scratchpad.action.to_dict())
  350. except:
  351. pass
  352. elif isinstance(message, ToolPromptMessage):
  353. if current_scratchpad:
  354. assert isinstance(message.content, str)
  355. current_scratchpad.observation = message.content
  356. elif isinstance(message, UserPromptMessage):
  357. if scratchpads:
  358. result.append(AssistantPromptMessage(content=self._format_assistant_message(scratchpads)))
  359. scratchpads = []
  360. current_scratchpad = None
  361. result.append(message)
  362. if scratchpads:
  363. result.append(AssistantPromptMessage(content=self._format_assistant_message(scratchpads)))
  364. historic_prompts = AgentHistoryPromptTransform(
  365. model_config=self.model_config,
  366. prompt_messages=current_session_messages or [],
  367. history_messages=result,
  368. memory=self.memory,
  369. ).get_prompt()
  370. return historic_prompts