retrieval_service.py 8.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232
  1. import threading
  2. from typing import Optional
  3. from flask import Flask, current_app
  4. from core.rag.data_post_processor.data_post_processor import DataPostProcessor
  5. from core.rag.datasource.keyword.keyword_factory import Keyword
  6. from core.rag.datasource.vdb.vector_factory import Vector
  7. from core.rag.rerank.constants.rerank_mode import RerankMode
  8. from core.rag.retrieval.retrieval_methods import RetrievalMethod
  9. from extensions.ext_database import db
  10. from models.dataset import Dataset
  11. from services.external_knowledge_service import ExternalDatasetService
  12. default_retrieval_model = {
  13. "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
  14. "reranking_enable": False,
  15. "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
  16. "top_k": 2,
  17. "score_threshold_enabled": False,
  18. }
  19. class RetrievalService:
  20. @classmethod
  21. def retrieve(
  22. cls,
  23. retrieval_method: str,
  24. dataset_id: str,
  25. query: str,
  26. top_k: int,
  27. score_threshold: Optional[float] = 0.0,
  28. reranking_model: Optional[dict] = None,
  29. reranking_mode: Optional[str] = "reranking_model",
  30. weights: Optional[dict] = None,
  31. ):
  32. dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
  33. if not dataset:
  34. return []
  35. if not dataset or dataset.available_document_count == 0 or dataset.available_segment_count == 0:
  36. return []
  37. all_documents = []
  38. threads = []
  39. exceptions = []
  40. # retrieval_model source with keyword
  41. if retrieval_method == "keyword_search":
  42. keyword_thread = threading.Thread(
  43. target=RetrievalService.keyword_search,
  44. kwargs={
  45. "flask_app": current_app._get_current_object(),
  46. "dataset_id": dataset_id,
  47. "query": query,
  48. "top_k": top_k,
  49. "all_documents": all_documents,
  50. "exceptions": exceptions,
  51. },
  52. )
  53. threads.append(keyword_thread)
  54. keyword_thread.start()
  55. # retrieval_model source with semantic
  56. if RetrievalMethod.is_support_semantic_search(retrieval_method):
  57. embedding_thread = threading.Thread(
  58. target=RetrievalService.embedding_search,
  59. kwargs={
  60. "flask_app": current_app._get_current_object(),
  61. "dataset_id": dataset_id,
  62. "query": query,
  63. "top_k": top_k,
  64. "score_threshold": score_threshold,
  65. "reranking_model": reranking_model,
  66. "all_documents": all_documents,
  67. "retrieval_method": retrieval_method,
  68. "exceptions": exceptions,
  69. },
  70. )
  71. threads.append(embedding_thread)
  72. embedding_thread.start()
  73. # retrieval source with full text
  74. if RetrievalMethod.is_support_fulltext_search(retrieval_method):
  75. full_text_index_thread = threading.Thread(
  76. target=RetrievalService.full_text_index_search,
  77. kwargs={
  78. "flask_app": current_app._get_current_object(),
  79. "dataset_id": dataset_id,
  80. "query": query,
  81. "retrieval_method": retrieval_method,
  82. "score_threshold": score_threshold,
  83. "top_k": top_k,
  84. "reranking_model": reranking_model,
  85. "all_documents": all_documents,
  86. "exceptions": exceptions,
  87. },
  88. )
  89. threads.append(full_text_index_thread)
  90. full_text_index_thread.start()
  91. for thread in threads:
  92. thread.join()
  93. if exceptions:
  94. exception_message = ";\n".join(exceptions)
  95. raise Exception(exception_message)
  96. if retrieval_method == RetrievalMethod.HYBRID_SEARCH.value:
  97. data_post_processor = DataPostProcessor(
  98. str(dataset.tenant_id), reranking_mode, reranking_model, weights, False
  99. )
  100. all_documents = data_post_processor.invoke(
  101. query=query, documents=all_documents, score_threshold=score_threshold, top_n=top_k
  102. )
  103. return all_documents
  104. @classmethod
  105. def external_retrieve(cls, dataset_id: str, query: str, external_retrieval_model: Optional[dict] = None):
  106. dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
  107. if not dataset:
  108. return []
  109. all_documents = ExternalDatasetService.fetch_external_knowledge_retrieval(
  110. dataset.tenant_id, dataset_id, query, external_retrieval_model
  111. )
  112. return all_documents
  113. @classmethod
  114. def keyword_search(
  115. cls, flask_app: Flask, dataset_id: str, query: str, top_k: int, all_documents: list, exceptions: list
  116. ):
  117. with flask_app.app_context():
  118. try:
  119. dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
  120. keyword = Keyword(dataset=dataset)
  121. documents = keyword.search(cls.escape_query_for_search(query), top_k=top_k)
  122. all_documents.extend(documents)
  123. except Exception as e:
  124. exceptions.append(str(e))
  125. @classmethod
  126. def embedding_search(
  127. cls,
  128. flask_app: Flask,
  129. dataset_id: str,
  130. query: str,
  131. top_k: int,
  132. score_threshold: Optional[float],
  133. reranking_model: Optional[dict],
  134. all_documents: list,
  135. retrieval_method: str,
  136. exceptions: list,
  137. ):
  138. with flask_app.app_context():
  139. try:
  140. dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
  141. vector = Vector(dataset=dataset)
  142. documents = vector.search_by_vector(
  143. cls.escape_query_for_search(query),
  144. search_type="similarity_score_threshold",
  145. top_k=top_k,
  146. score_threshold=score_threshold,
  147. filter={"group_id": [dataset.id]},
  148. )
  149. if documents:
  150. if (
  151. reranking_model
  152. and reranking_model.get("reranking_model_name")
  153. and reranking_model.get("reranking_provider_name")
  154. and retrieval_method == RetrievalMethod.SEMANTIC_SEARCH.value
  155. ):
  156. data_post_processor = DataPostProcessor(
  157. str(dataset.tenant_id), RerankMode.RERANKING_MODEL.value, reranking_model, None, False
  158. )
  159. all_documents.extend(
  160. data_post_processor.invoke(
  161. query=query, documents=documents, score_threshold=score_threshold, top_n=len(documents)
  162. )
  163. )
  164. else:
  165. all_documents.extend(documents)
  166. except Exception as e:
  167. exceptions.append(str(e))
  168. @classmethod
  169. def full_text_index_search(
  170. cls,
  171. flask_app: Flask,
  172. dataset_id: str,
  173. query: str,
  174. top_k: int,
  175. score_threshold: Optional[float],
  176. reranking_model: Optional[dict],
  177. all_documents: list,
  178. retrieval_method: str,
  179. exceptions: list,
  180. ):
  181. with flask_app.app_context():
  182. try:
  183. dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
  184. vector_processor = Vector(
  185. dataset=dataset,
  186. )
  187. documents = vector_processor.search_by_full_text(cls.escape_query_for_search(query), top_k=top_k)
  188. if documents:
  189. if (
  190. reranking_model
  191. and reranking_model.get("reranking_model_name")
  192. and reranking_model.get("reranking_provider_name")
  193. and retrieval_method == RetrievalMethod.FULL_TEXT_SEARCH.value
  194. ):
  195. data_post_processor = DataPostProcessor(
  196. str(dataset.tenant_id), RerankMode.RERANKING_MODEL.value, reranking_model, None, False
  197. )
  198. all_documents.extend(
  199. data_post_processor.invoke(
  200. query=query, documents=documents, score_threshold=score_threshold, top_n=len(documents)
  201. )
  202. )
  203. else:
  204. all_documents.extend(documents)
  205. except Exception as e:
  206. exceptions.append(str(e))
  207. @staticmethod
  208. def escape_query_for_search(query: str) -> str:
  209. return query.replace('"', '\\"')