orchestrator_rule_parser.py 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302
  1. import math
  2. from typing import Optional
  3. from langchain import WikipediaAPIWrapper
  4. from langchain.callbacks.manager import Callbacks
  5. from langchain.chat_models import ChatOpenAI
  6. from langchain.memory.chat_memory import BaseChatMemory
  7. from langchain.tools import BaseTool, Tool, WikipediaQueryRun
  8. from pydantic import BaseModel, Field
  9. from core.agent.agent_executor import AgentExecutor, PlanningStrategy, AgentConfiguration
  10. from core.callback_handler.agent_loop_gather_callback_handler import AgentLoopGatherCallbackHandler
  11. from core.callback_handler.dataset_tool_callback_handler import DatasetToolCallbackHandler
  12. from core.callback_handler.main_chain_gather_callback_handler import MainChainGatherCallbackHandler
  13. from core.callback_handler.std_out_callback_handler import DifyStdOutCallbackHandler
  14. from core.chain.sensitive_word_avoidance_chain import SensitiveWordAvoidanceChain
  15. from core.conversation_message_task import ConversationMessageTask
  16. from core.llm.llm_builder import LLMBuilder
  17. from core.tool.dataset_retriever_tool import DatasetRetrieverTool
  18. from core.tool.provider.serpapi_provider import SerpAPIToolProvider
  19. from core.tool.serpapi_wrapper import OptimizedSerpAPIWrapper, OptimizedSerpAPIInput
  20. from core.tool.web_reader_tool import WebReaderTool
  21. from extensions.ext_database import db
  22. from libs import helper
  23. from models.dataset import Dataset, DatasetProcessRule
  24. from models.model import AppModelConfig
  25. class OrchestratorRuleParser:
  26. """Parse the orchestrator rule to entities."""
  27. def __init__(self, tenant_id: str, app_model_config: AppModelConfig):
  28. self.tenant_id = tenant_id
  29. self.app_model_config = app_model_config
  30. self.agent_summary_model_name = "gpt-3.5-turbo-16k"
  31. self.dataset_retrieve_model_name = "gpt-3.5-turbo"
  32. def to_agent_executor(self, conversation_message_task: ConversationMessageTask, memory: Optional[BaseChatMemory],
  33. rest_tokens: int, chain_callback: MainChainGatherCallbackHandler) \
  34. -> Optional[AgentExecutor]:
  35. if not self.app_model_config.agent_mode_dict:
  36. return None
  37. agent_mode_config = self.app_model_config.agent_mode_dict
  38. model_dict = self.app_model_config.model_dict
  39. chain = None
  40. if agent_mode_config and agent_mode_config.get('enabled'):
  41. tool_configs = agent_mode_config.get('tools', [])
  42. agent_model_name = model_dict.get('name', 'gpt-4')
  43. # add agent callback to record agent thoughts
  44. agent_callback = AgentLoopGatherCallbackHandler(
  45. model_name=agent_model_name,
  46. conversation_message_task=conversation_message_task
  47. )
  48. chain_callback.agent_callback = agent_callback
  49. agent_llm = LLMBuilder.to_llm(
  50. tenant_id=self.tenant_id,
  51. model_name=agent_model_name,
  52. temperature=0,
  53. max_tokens=1500,
  54. callbacks=[agent_callback, DifyStdOutCallbackHandler()]
  55. )
  56. planning_strategy = PlanningStrategy(agent_mode_config.get('strategy', 'router'))
  57. # only OpenAI chat model (include Azure) support function call, use ReACT instead
  58. if not isinstance(agent_llm, ChatOpenAI) \
  59. and planning_strategy in [PlanningStrategy.FUNCTION_CALL, PlanningStrategy.MULTI_FUNCTION_CALL]:
  60. planning_strategy = PlanningStrategy.REACT
  61. summary_llm = LLMBuilder.to_llm(
  62. tenant_id=self.tenant_id,
  63. model_name=self.agent_summary_model_name,
  64. temperature=0,
  65. max_tokens=500,
  66. callbacks=[DifyStdOutCallbackHandler()]
  67. )
  68. tools = self.to_tools(
  69. tool_configs=tool_configs,
  70. conversation_message_task=conversation_message_task,
  71. model_name=self.agent_summary_model_name,
  72. rest_tokens=rest_tokens,
  73. callbacks=[agent_callback, DifyStdOutCallbackHandler()]
  74. )
  75. if len(tools) == 0:
  76. return None
  77. dataset_llm = LLMBuilder.to_llm(
  78. tenant_id=self.tenant_id,
  79. model_name=self.dataset_retrieve_model_name,
  80. temperature=0,
  81. max_tokens=500,
  82. callbacks=[DifyStdOutCallbackHandler()]
  83. )
  84. agent_configuration = AgentConfiguration(
  85. strategy=planning_strategy,
  86. llm=agent_llm,
  87. tools=tools,
  88. summary_llm=summary_llm,
  89. dataset_llm=dataset_llm,
  90. memory=memory,
  91. callbacks=[chain_callback, agent_callback],
  92. max_iterations=10,
  93. max_execution_time=400.0,
  94. early_stopping_method="generate"
  95. )
  96. return AgentExecutor(agent_configuration)
  97. return chain
  98. def to_sensitive_word_avoidance_chain(self, callbacks: Callbacks = None, **kwargs) \
  99. -> Optional[SensitiveWordAvoidanceChain]:
  100. """
  101. Convert app sensitive word avoidance config to chain
  102. :param kwargs:
  103. :return:
  104. """
  105. if not self.app_model_config.sensitive_word_avoidance_dict:
  106. return None
  107. sensitive_word_avoidance_config = self.app_model_config.sensitive_word_avoidance_dict
  108. sensitive_words = sensitive_word_avoidance_config.get("words", "")
  109. if sensitive_word_avoidance_config.get("enabled", False) and sensitive_words:
  110. return SensitiveWordAvoidanceChain(
  111. sensitive_words=sensitive_words.split(","),
  112. canned_response=sensitive_word_avoidance_config.get("canned_response", ''),
  113. output_key="sensitive_word_avoidance_output",
  114. callbacks=callbacks,
  115. **kwargs
  116. )
  117. return None
  118. def to_tools(self, tool_configs: list, conversation_message_task: ConversationMessageTask,
  119. model_name: str, rest_tokens: int, callbacks: Callbacks = None) -> list[BaseTool]:
  120. """
  121. Convert app agent tool configs to tools
  122. :param rest_tokens:
  123. :param tool_configs: app agent tool configs
  124. :param model_name:
  125. :param conversation_message_task:
  126. :param callbacks:
  127. :return:
  128. """
  129. tools = []
  130. for tool_config in tool_configs:
  131. tool_type = list(tool_config.keys())[0]
  132. tool_val = list(tool_config.values())[0]
  133. if not tool_val.get("enabled") or tool_val.get("enabled") is not True:
  134. continue
  135. tool = None
  136. if tool_type == "dataset":
  137. tool = self.to_dataset_retriever_tool(tool_val, conversation_message_task, rest_tokens)
  138. elif tool_type == "web_reader":
  139. tool = self.to_web_reader_tool(model_name)
  140. elif tool_type == "google_search":
  141. tool = self.to_google_search_tool()
  142. elif tool_type == "wikipedia":
  143. tool = self.to_wikipedia_tool()
  144. elif tool_type == "current_datetime":
  145. tool = self.to_current_datetime_tool()
  146. if tool:
  147. tool.callbacks.extend(callbacks)
  148. tools.append(tool)
  149. return tools
  150. def to_dataset_retriever_tool(self, tool_config: dict, conversation_message_task: ConversationMessageTask,
  151. rest_tokens: int) \
  152. -> Optional[BaseTool]:
  153. """
  154. A dataset tool is a tool that can be used to retrieve information from a dataset
  155. :param rest_tokens:
  156. :param tool_config:
  157. :param conversation_message_task:
  158. :return:
  159. """
  160. # get dataset from dataset id
  161. dataset = db.session.query(Dataset).filter(
  162. Dataset.tenant_id == self.tenant_id,
  163. Dataset.id == tool_config.get("id")
  164. ).first()
  165. if dataset and dataset.available_document_count == 0 and dataset.available_document_count == 0:
  166. return None
  167. k = self._dynamic_calc_retrieve_k(dataset, rest_tokens)
  168. tool = DatasetRetrieverTool.from_dataset(
  169. dataset=dataset,
  170. k=k,
  171. callbacks=[DatasetToolCallbackHandler(conversation_message_task)]
  172. )
  173. return tool
  174. def to_web_reader_tool(self, model_name: str) -> Optional[BaseTool]:
  175. """
  176. A tool for reading web pages
  177. :return:
  178. """
  179. summary_llm = LLMBuilder.to_llm(
  180. tenant_id=self.tenant_id,
  181. model_name=model_name,
  182. temperature=0,
  183. max_tokens=500,
  184. callbacks=[DifyStdOutCallbackHandler()]
  185. )
  186. tool = WebReaderTool(
  187. llm=summary_llm,
  188. max_chunk_length=4000,
  189. continue_reading=True,
  190. callbacks=[DifyStdOutCallbackHandler()]
  191. )
  192. return tool
  193. def to_google_search_tool(self) -> Optional[BaseTool]:
  194. tool_provider = SerpAPIToolProvider(tenant_id=self.tenant_id)
  195. func_kwargs = tool_provider.credentials_to_func_kwargs()
  196. if not func_kwargs:
  197. return None
  198. tool = Tool(
  199. name="google_search",
  200. description="A tool for performing a Google search and extracting snippets and webpages "
  201. "when you need to search for something you don't know or when your information "
  202. "is not up to date. "
  203. "Input should be a search query.",
  204. func=OptimizedSerpAPIWrapper(**func_kwargs).run,
  205. args_schema=OptimizedSerpAPIInput,
  206. callbacks=[DifyStdOutCallbackHandler()]
  207. )
  208. return tool
  209. def to_current_datetime_tool(self) -> Optional[BaseTool]:
  210. tool = Tool(
  211. name="current_datetime",
  212. description="A tool when you want to get the current date, time, week, month or year, "
  213. "and the time zone is UTC. Result is \"<date> <time> <timezone> <week>\".",
  214. func=helper.get_current_datetime,
  215. callbacks=[DifyStdOutCallbackHandler()]
  216. )
  217. return tool
  218. def to_wikipedia_tool(self) -> Optional[BaseTool]:
  219. class WikipediaInput(BaseModel):
  220. query: str = Field(..., description="search query.")
  221. return WikipediaQueryRun(
  222. name="wikipedia",
  223. api_wrapper=WikipediaAPIWrapper(doc_content_chars_max=4000),
  224. args_schema=WikipediaInput,
  225. callbacks=[DifyStdOutCallbackHandler()]
  226. )
  227. @classmethod
  228. def _dynamic_calc_retrieve_k(cls, dataset: Dataset, rest_tokens: int) -> int:
  229. DEFAULT_K = 2
  230. CONTEXT_TOKENS_PERCENT = 0.3
  231. processing_rule = dataset.latest_process_rule
  232. if not processing_rule:
  233. return DEFAULT_K
  234. if processing_rule.mode == "custom":
  235. rules = processing_rule.rules_dict
  236. if not rules:
  237. return DEFAULT_K
  238. segmentation = rules["segmentation"]
  239. segment_max_tokens = segmentation["max_tokens"]
  240. else:
  241. segment_max_tokens = DatasetProcessRule.AUTOMATIC_RULES['segmentation']['max_tokens']
  242. # when rest_tokens is less than default context tokens
  243. if rest_tokens < segment_max_tokens * DEFAULT_K:
  244. return rest_tokens // segment_max_tokens
  245. context_limit_tokens = math.floor(rest_tokens * CONTEXT_TOKENS_PERCENT)
  246. # when context_limit_tokens is less than default context tokens, use default_k
  247. if context_limit_tokens <= segment_max_tokens * DEFAULT_K:
  248. return DEFAULT_K
  249. # Expand the k value when there's still some room left in the 30% rest tokens space
  250. return context_limit_tokens // segment_max_tokens