document.py 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415
  1. import json
  2. from flask import request
  3. from flask_restful import marshal, reqparse # type: ignore
  4. from sqlalchemy import desc
  5. from werkzeug.exceptions import NotFound
  6. import services.dataset_service
  7. from controllers.common.errors import FilenameNotExistsError
  8. from controllers.service_api import api
  9. from controllers.service_api.app.error import (
  10. FileTooLargeError,
  11. NoFileUploadedError,
  12. ProviderNotInitializeError,
  13. TooManyFilesError,
  14. UnsupportedFileTypeError,
  15. )
  16. from controllers.service_api.dataset.error import (
  17. ArchivedDocumentImmutableError,
  18. DocumentIndexingError,
  19. )
  20. from controllers.service_api.wraps import DatasetApiResource, cloud_edition_billing_resource_check
  21. from core.errors.error import ProviderTokenNotInitError
  22. from extensions.ext_database import db
  23. from fields.document_fields import document_fields, document_status_fields
  24. from libs.login import current_user
  25. from models.dataset import Dataset, Document, DocumentSegment
  26. from services.dataset_service import DocumentService
  27. from services.entities.knowledge_entities.knowledge_entities import KnowledgeConfig
  28. from services.file_service import FileService
  29. class DocumentAddByTextApi(DatasetApiResource):
  30. """Resource for documents."""
  31. @cloud_edition_billing_resource_check("vector_space", "dataset")
  32. @cloud_edition_billing_resource_check("documents", "dataset")
  33. def post(self, tenant_id, dataset_id):
  34. """Create document by text."""
  35. parser = reqparse.RequestParser()
  36. parser.add_argument("name", type=str, required=True, nullable=False, location="json")
  37. parser.add_argument("text", type=str, required=True, nullable=False, location="json")
  38. parser.add_argument("process_rule", type=dict, required=False, nullable=True, location="json")
  39. parser.add_argument("original_document_id", type=str, required=False, location="json")
  40. parser.add_argument("doc_form", type=str, default="text_model", required=False, nullable=False, location="json")
  41. parser.add_argument(
  42. "doc_language", type=str, default="English", required=False, nullable=False, location="json"
  43. )
  44. parser.add_argument(
  45. "indexing_technique", type=str, choices=Dataset.INDEXING_TECHNIQUE_LIST, nullable=False, location="json"
  46. )
  47. parser.add_argument("retrieval_model", type=dict, required=False, nullable=False, location="json")
  48. args = parser.parse_args()
  49. dataset_id = str(dataset_id)
  50. tenant_id = str(tenant_id)
  51. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  52. if not dataset:
  53. raise ValueError("Dataset is not exist.")
  54. if not dataset.indexing_technique and not args["indexing_technique"]:
  55. raise ValueError("indexing_technique is required.")
  56. text = args.get("text")
  57. name = args.get("name")
  58. if text is None or name is None:
  59. raise ValueError("Both 'text' and 'name' must be non-null values.")
  60. upload_file = FileService.upload_text(text=str(text), text_name=str(name))
  61. data_source = {
  62. "type": "upload_file",
  63. "info_list": {"data_source_type": "upload_file", "file_info_list": {"file_ids": [upload_file.id]}},
  64. }
  65. args["data_source"] = data_source
  66. knowledge_config = KnowledgeConfig(**args)
  67. # validate args
  68. DocumentService.document_create_args_validate(knowledge_config)
  69. try:
  70. documents, batch = DocumentService.save_document_with_dataset_id(
  71. dataset=dataset,
  72. knowledge_config=knowledge_config,
  73. account=current_user,
  74. dataset_process_rule=dataset.latest_process_rule if "process_rule" not in args else None,
  75. created_from="api",
  76. )
  77. except ProviderTokenNotInitError as ex:
  78. raise ProviderNotInitializeError(ex.description)
  79. document = documents[0]
  80. documents_and_batch_fields = {"document": marshal(document, document_fields), "batch": batch}
  81. return documents_and_batch_fields, 200
  82. class DocumentUpdateByTextApi(DatasetApiResource):
  83. """Resource for update documents."""
  84. @cloud_edition_billing_resource_check("vector_space", "dataset")
  85. def post(self, tenant_id, dataset_id, document_id):
  86. """Update document by text."""
  87. parser = reqparse.RequestParser()
  88. parser.add_argument("name", type=str, required=False, nullable=True, location="json")
  89. parser.add_argument("text", type=str, required=False, nullable=True, location="json")
  90. parser.add_argument("process_rule", type=dict, required=False, nullable=True, location="json")
  91. parser.add_argument("doc_form", type=str, default="text_model", required=False, nullable=False, location="json")
  92. parser.add_argument(
  93. "doc_language", type=str, default="English", required=False, nullable=False, location="json"
  94. )
  95. parser.add_argument("retrieval_model", type=dict, required=False, nullable=False, location="json")
  96. args = parser.parse_args()
  97. dataset_id = str(dataset_id)
  98. tenant_id = str(tenant_id)
  99. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  100. if not dataset:
  101. raise ValueError("Dataset is not exist.")
  102. # indexing_technique is already set in dataset since this is an update
  103. args["indexing_technique"] = dataset.indexing_technique
  104. if args["text"]:
  105. text = args.get("text")
  106. name = args.get("name")
  107. if text is None or name is None:
  108. raise ValueError("Both text and name must be strings.")
  109. upload_file = FileService.upload_text(text=str(text), text_name=str(name))
  110. data_source = {
  111. "type": "upload_file",
  112. "info_list": {"data_source_type": "upload_file", "file_info_list": {"file_ids": [upload_file.id]}},
  113. }
  114. args["data_source"] = data_source
  115. # validate args
  116. args["original_document_id"] = str(document_id)
  117. knowledge_config = KnowledgeConfig(**args)
  118. DocumentService.document_create_args_validate(knowledge_config)
  119. try:
  120. documents, batch = DocumentService.save_document_with_dataset_id(
  121. dataset=dataset,
  122. knowledge_config=knowledge_config,
  123. account=current_user,
  124. dataset_process_rule=dataset.latest_process_rule if "process_rule" not in args else None,
  125. created_from="api",
  126. )
  127. except ProviderTokenNotInitError as ex:
  128. raise ProviderNotInitializeError(ex.description)
  129. document = documents[0]
  130. documents_and_batch_fields = {"document": marshal(document, document_fields), "batch": batch}
  131. return documents_and_batch_fields, 200
  132. class DocumentAddByFileApi(DatasetApiResource):
  133. """Resource for documents."""
  134. @cloud_edition_billing_resource_check("vector_space", "dataset")
  135. @cloud_edition_billing_resource_check("documents", "dataset")
  136. def post(self, tenant_id, dataset_id):
  137. """Create document by upload file."""
  138. args = {}
  139. if "data" in request.form:
  140. args = json.loads(request.form["data"])
  141. if "doc_form" not in args:
  142. args["doc_form"] = "text_model"
  143. if "doc_language" not in args:
  144. args["doc_language"] = "English"
  145. # get dataset info
  146. dataset_id = str(dataset_id)
  147. tenant_id = str(tenant_id)
  148. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  149. if not dataset:
  150. raise ValueError("Dataset is not exist.")
  151. if not dataset.indexing_technique and not args.get("indexing_technique"):
  152. raise ValueError("indexing_technique is required.")
  153. # save file info
  154. file = request.files["file"]
  155. # check file
  156. if "file" not in request.files:
  157. raise NoFileUploadedError()
  158. if len(request.files) > 1:
  159. raise TooManyFilesError()
  160. if not file.filename:
  161. raise FilenameNotExistsError
  162. upload_file = FileService.upload_file(
  163. filename=file.filename,
  164. content=file.read(),
  165. mimetype=file.mimetype,
  166. user=current_user,
  167. source="datasets",
  168. )
  169. data_source = {
  170. "type": "upload_file",
  171. "info_list": {"data_source_type": "upload_file", "file_info_list": {"file_ids": [upload_file.id]}},
  172. }
  173. args["data_source"] = data_source
  174. # validate args
  175. knowledge_config = KnowledgeConfig(**args)
  176. DocumentService.document_create_args_validate(knowledge_config)
  177. try:
  178. documents, batch = DocumentService.save_document_with_dataset_id(
  179. dataset=dataset,
  180. knowledge_config=knowledge_config,
  181. account=dataset.created_by_account,
  182. dataset_process_rule=dataset.latest_process_rule if "process_rule" not in args else None,
  183. created_from="api",
  184. )
  185. except ProviderTokenNotInitError as ex:
  186. raise ProviderNotInitializeError(ex.description)
  187. document = documents[0]
  188. documents_and_batch_fields = {"document": marshal(document, document_fields), "batch": batch}
  189. return documents_and_batch_fields, 200
  190. class DocumentUpdateByFileApi(DatasetApiResource):
  191. """Resource for update documents."""
  192. @cloud_edition_billing_resource_check("vector_space", "dataset")
  193. def post(self, tenant_id, dataset_id, document_id):
  194. """Update document by upload file."""
  195. args = {}
  196. if "data" in request.form:
  197. args = json.loads(request.form["data"])
  198. if "doc_form" not in args:
  199. args["doc_form"] = "text_model"
  200. if "doc_language" not in args:
  201. args["doc_language"] = "English"
  202. # get dataset info
  203. dataset_id = str(dataset_id)
  204. tenant_id = str(tenant_id)
  205. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  206. if not dataset:
  207. raise ValueError("Dataset is not exist.")
  208. # indexing_technique is already set in dataset since this is an update
  209. args["indexing_technique"] = dataset.indexing_technique
  210. if "file" in request.files:
  211. # save file info
  212. file = request.files["file"]
  213. if len(request.files) > 1:
  214. raise TooManyFilesError()
  215. if not file.filename:
  216. raise FilenameNotExistsError
  217. try:
  218. upload_file = FileService.upload_file(
  219. filename=file.filename,
  220. content=file.read(),
  221. mimetype=file.mimetype,
  222. user=current_user,
  223. source="datasets",
  224. )
  225. except services.errors.file.FileTooLargeError as file_too_large_error:
  226. raise FileTooLargeError(file_too_large_error.description)
  227. except services.errors.file.UnsupportedFileTypeError:
  228. raise UnsupportedFileTypeError()
  229. data_source = {
  230. "type": "upload_file",
  231. "info_list": {"data_source_type": "upload_file", "file_info_list": {"file_ids": [upload_file.id]}},
  232. }
  233. args["data_source"] = data_source
  234. # validate args
  235. args["original_document_id"] = str(document_id)
  236. knowledge_config = KnowledgeConfig(**args)
  237. DocumentService.document_create_args_validate(knowledge_config)
  238. try:
  239. documents, batch = DocumentService.save_document_with_dataset_id(
  240. dataset=dataset,
  241. knowledge_config=knowledge_config,
  242. account=dataset.created_by_account,
  243. dataset_process_rule=dataset.latest_process_rule if "process_rule" not in args else None,
  244. created_from="api",
  245. )
  246. except ProviderTokenNotInitError as ex:
  247. raise ProviderNotInitializeError(ex.description)
  248. document = documents[0]
  249. documents_and_batch_fields = {"document": marshal(document, document_fields), "batch": document.batch}
  250. return documents_and_batch_fields, 200
  251. class DocumentDeleteApi(DatasetApiResource):
  252. def delete(self, tenant_id, dataset_id, document_id):
  253. """Delete document."""
  254. document_id = str(document_id)
  255. dataset_id = str(dataset_id)
  256. tenant_id = str(tenant_id)
  257. # get dataset info
  258. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  259. if not dataset:
  260. raise ValueError("Dataset is not exist.")
  261. document = DocumentService.get_document(dataset.id, document_id)
  262. # 404 if document not found
  263. if document is None:
  264. raise NotFound("Document Not Exists.")
  265. # 403 if document is archived
  266. if DocumentService.check_archived(document):
  267. raise ArchivedDocumentImmutableError()
  268. try:
  269. # delete document
  270. DocumentService.delete_document(document)
  271. except services.errors.document.DocumentIndexingError:
  272. raise DocumentIndexingError("Cannot delete document during indexing.")
  273. return {"result": "success"}, 200
  274. class DocumentListApi(DatasetApiResource):
  275. def get(self, tenant_id, dataset_id):
  276. dataset_id = str(dataset_id)
  277. tenant_id = str(tenant_id)
  278. page = request.args.get("page", default=1, type=int)
  279. limit = request.args.get("limit", default=20, type=int)
  280. search = request.args.get("keyword", default=None, type=str)
  281. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  282. if not dataset:
  283. raise NotFound("Dataset not found.")
  284. query = Document.query.filter_by(dataset_id=str(dataset_id), tenant_id=tenant_id)
  285. if search:
  286. search = f"%{search}%"
  287. query = query.filter(Document.name.like(search))
  288. query = query.order_by(desc(Document.created_at))
  289. paginated_documents = query.paginate(page=page, per_page=limit, max_per_page=100, error_out=False)
  290. documents = paginated_documents.items
  291. response = {
  292. "data": marshal(documents, document_fields),
  293. "has_more": len(documents) == limit,
  294. "limit": limit,
  295. "total": paginated_documents.total,
  296. "page": page,
  297. }
  298. return response
  299. class DocumentIndexingStatusApi(DatasetApiResource):
  300. def get(self, tenant_id, dataset_id, batch):
  301. dataset_id = str(dataset_id)
  302. batch = str(batch)
  303. tenant_id = str(tenant_id)
  304. # get dataset
  305. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  306. if not dataset:
  307. raise NotFound("Dataset not found.")
  308. # get documents
  309. documents = DocumentService.get_batch_documents(dataset_id, batch)
  310. if not documents:
  311. raise NotFound("Documents not found.")
  312. documents_status = []
  313. for document in documents:
  314. completed_segments = DocumentSegment.query.filter(
  315. DocumentSegment.completed_at.isnot(None),
  316. DocumentSegment.document_id == str(document.id),
  317. DocumentSegment.status != "re_segment",
  318. ).count()
  319. total_segments = DocumentSegment.query.filter(
  320. DocumentSegment.document_id == str(document.id), DocumentSegment.status != "re_segment"
  321. ).count()
  322. document.completed_segments = completed_segments
  323. document.total_segments = total_segments
  324. if document.is_paused:
  325. document.indexing_status = "paused"
  326. documents_status.append(marshal(document, document_status_fields))
  327. data = {"data": documents_status}
  328. return data
  329. api.add_resource(
  330. DocumentAddByTextApi,
  331. "/datasets/<uuid:dataset_id>/document/create_by_text",
  332. "/datasets/<uuid:dataset_id>/document/create-by-text",
  333. )
  334. api.add_resource(
  335. DocumentAddByFileApi,
  336. "/datasets/<uuid:dataset_id>/document/create_by_file",
  337. "/datasets/<uuid:dataset_id>/document/create-by-file",
  338. )
  339. api.add_resource(
  340. DocumentUpdateByTextApi,
  341. "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update_by_text",
  342. "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update-by-text",
  343. )
  344. api.add_resource(
  345. DocumentUpdateByFileApi,
  346. "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update_by_file",
  347. "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update-by-file",
  348. )
  349. api.add_resource(DocumentDeleteApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>")
  350. api.add_resource(DocumentListApi, "/datasets/<uuid:dataset_id>/documents")
  351. api.add_resource(DocumentIndexingStatusApi, "/datasets/<uuid:dataset_id>/documents/<string:batch>/indexing-status")