Jyong d52c750942 embedding model check when init the knowledge (#10463) hai 5 meses
..
.idea 7ae728a9a3 fix nltk averaged_perceptron_tagger download and fix score limit is none (#7582) hai 7 meses
.vscode e61752bd3a feat/enhance the multi-modal support (#8818) hai 6 meses
configs 033ab5490b feat: support LLM understand video (#9828) hai 5 meses
constants 3e9d271b52 nltk security issue and upgrade unstructured (#9558) hai 6 meses
contexts e61752bd3a feat/enhance the multi-modal support (#8818) hai 6 meses
controllers d52c750942 embedding model check when init the knowledge (#10463) hai 5 meses
core 4fe5297e35 feat: add cogVideo tool (#10456) hai 5 meses
docker 8dfdb37de3 fix: use LOG_LEVEL for celery startup (#7628) hai 7 meses
events e61752bd3a feat/enhance the multi-modal support (#8818) hai 6 meses
extensions 7c2a9b0744 celery worker log format following LOG_FORMAT env#9404 (#10016) hai 5 meses
factories 7962101e5e fix: iteration none output error (#10295) hai 5 meses
fields 6e23903c63 Conversation delete issue (#10423) hai 5 meses
libs 574c4a264f chore(lint): Use logging.exception instead of logging.error (#10415) hai 5 meses
migrations bf048b8d7c refactor(migration/model): update column types for workflow schema (#10160) hai 5 meses
models 249b897872 feat(model): add validation for custom disclaimer length (#10287) hai 5 meses
schedule 07ad362854 fix: Cannot find declaration to go to CLEAN_DAY_SETTING (#10157) hai 5 meses
services 888d7e6422 fix segment enable service api (#10445) hai 5 meses
tasks aa3da0e24c fix(ops_tracing): enhance error handle in celery tasks. (#10401) hai 5 meses
templates 4fd2743efa Feat/new login (#8120) hai 6 meses
tests 438ad8148b fix(http_request): send form data (#10431) hai 5 meses
.dockerignore 27f0ae8416 build: support Poetry for depencencies tool in api's Dockerfile (#5105) hai 10 meses
.env.example 033ab5490b feat: support LLM understand video (#9828) hai 5 meses
Dockerfile 87c1de66f2 chore(Dockerfile): upgrade zlib arm64 (#10244) hai 5 meses
README.md eafe5a9d8f chore(ci): bring back poetry cache to speed up CI jobs (#10347) hai 5 meses
app.py 0e8ab0588f fix: (#10437 followup) fix conditions with DEBUG config (#10438) hai 5 meses
app_factory.py 0e8ab0588f fix: (#10437 followup) fix conditions with DEBUG config (#10438) hai 5 meses
commands.py 878d13ef42 Added OceanBase as an option for the vector store in Dify (#10010) hai 5 meses
poetry.lock 7c2a9b0744 celery worker log format following LOG_FORMAT env#9404 (#10016) hai 5 meses
poetry.toml f62f71a81a build: initial support for poetry build tool (#4513) hai 10 meses
pyproject.toml 7c2a9b0744 celery worker log format following LOG_FORMAT env#9404 (#10016) hai 5 meses
pytest.ini 0ebd985672 feat: add models for gitee.ai (#9490) hai 5 meses

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   # change the profile to other vector database if you are not using weaviate
   docker compose -f docker-compose.middleware.yaml --profile weaviate -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.

```bash for Linux sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env


   ```bash for Mac
   secret_key=$(openssl rand -base64 42)
   sed -i '' "/^SECRET_KEY=/c\\
   SECRET_KEY=${secret_key}" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies
   poetry env use 3.10
   poetry install

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000...
  3. If you need to handle and debug the async tasks (e.g. dataset importing and documents indexing), please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install -C api --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   poetry run -C api bash dev/pytest/pytest_all_tests.sh