12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397 |
- import datetime
- import json
- import logging
- import random
- import time
- import uuid
- from typing import Optional
- from flask import current_app
- from flask_login import current_user
- from sqlalchemy import func
- from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
- from core.model_manager import ModelManager
- from core.model_runtime.entities.model_entities import ModelType
- from core.rag.datasource.keyword.keyword_factory import Keyword
- from core.rag.models.document import Document as RAGDocument
- from events.dataset_event import dataset_was_deleted
- from events.document_event import document_was_deleted
- from extensions.ext_database import db
- from extensions.ext_redis import redis_client
- from libs import helper
- from models.account import Account
- from models.dataset import (
- AppDatasetJoin,
- Dataset,
- DatasetCollectionBinding,
- DatasetProcessRule,
- DatasetQuery,
- Document,
- DocumentSegment,
- )
- from models.model import UploadFile
- from models.source import DataSourceBinding
- from services.errors.account import NoPermissionError
- from services.errors.dataset import DatasetNameDuplicateError
- from services.errors.document import DocumentIndexingError
- from services.errors.file import FileNotExistsError
- from services.feature_service import FeatureModel, FeatureService
- from services.tag_service import TagService
- from services.vector_service import VectorService
- from tasks.clean_notion_document_task import clean_notion_document_task
- from tasks.deal_dataset_vector_index_task import deal_dataset_vector_index_task
- from tasks.delete_segment_from_index_task import delete_segment_from_index_task
- from tasks.disable_segment_from_index_task import disable_segment_from_index_task
- from tasks.document_indexing_task import document_indexing_task
- from tasks.document_indexing_update_task import document_indexing_update_task
- from tasks.duplicate_document_indexing_task import duplicate_document_indexing_task
- from tasks.recover_document_indexing_task import recover_document_indexing_task
- from tasks.retry_document_indexing_task import retry_document_indexing_task
- class DatasetService:
- @staticmethod
- def get_datasets(page, per_page, provider="vendor", tenant_id=None, user=None, search=None, tag_ids=None):
- if user:
- permission_filter = db.or_(Dataset.created_by == user.id,
- Dataset.permission == 'all_team_members')
- else:
- permission_filter = Dataset.permission == 'all_team_members'
- query = Dataset.query.filter(
- db.and_(Dataset.provider == provider, Dataset.tenant_id == tenant_id, permission_filter)) \
- .order_by(Dataset.created_at.desc())
- if search:
- query = query.filter(db.and_(Dataset.name.ilike(f'%{search}%')))
- if tag_ids:
- target_ids = TagService.get_target_ids_by_tag_ids('knowledge', tenant_id, tag_ids)
- if target_ids:
- query = query.filter(db.and_(Dataset.id.in_(target_ids)))
- else:
- return [], 0
- datasets = query.paginate(
- page=page,
- per_page=per_page,
- max_per_page=100,
- error_out=False
- )
- return datasets.items, datasets.total
- @staticmethod
- def get_process_rules(dataset_id):
- # get the latest process rule
- dataset_process_rule = db.session.query(DatasetProcessRule). \
- filter(DatasetProcessRule.dataset_id == dataset_id). \
- order_by(DatasetProcessRule.created_at.desc()). \
- limit(1). \
- one_or_none()
- if dataset_process_rule:
- mode = dataset_process_rule.mode
- rules = dataset_process_rule.rules_dict
- else:
- mode = DocumentService.DEFAULT_RULES['mode']
- rules = DocumentService.DEFAULT_RULES['rules']
- return {
- 'mode': mode,
- 'rules': rules
- }
- @staticmethod
- def get_datasets_by_ids(ids, tenant_id):
- datasets = Dataset.query.filter(Dataset.id.in_(ids),
- Dataset.tenant_id == tenant_id).paginate(
- page=1, per_page=len(ids), max_per_page=len(ids), error_out=False)
- return datasets.items, datasets.total
- @staticmethod
- def create_empty_dataset(tenant_id: str, name: str, indexing_technique: Optional[str], account: Account):
- # check if dataset name already exists
- if Dataset.query.filter_by(name=name, tenant_id=tenant_id).first():
- raise DatasetNameDuplicateError(
- f'Dataset with name {name} already exists.')
- embedding_model = None
- if indexing_technique == 'high_quality':
- model_manager = ModelManager()
- embedding_model = model_manager.get_default_model_instance(
- tenant_id=tenant_id,
- model_type=ModelType.TEXT_EMBEDDING
- )
- dataset = Dataset(name=name, indexing_technique=indexing_technique)
- # dataset = Dataset(name=name, provider=provider, config=config)
- dataset.created_by = account.id
- dataset.updated_by = account.id
- dataset.tenant_id = tenant_id
- dataset.embedding_model_provider = embedding_model.provider if embedding_model else None
- dataset.embedding_model = embedding_model.model if embedding_model else None
- db.session.add(dataset)
- db.session.commit()
- return dataset
- @staticmethod
- def get_dataset(dataset_id):
- return Dataset.query.filter_by(
- id=dataset_id
- ).first()
- @staticmethod
- def check_dataset_model_setting(dataset):
- if dataset.indexing_technique == 'high_quality':
- try:
- model_manager = ModelManager()
- model_manager.get_model_instance(
- tenant_id=dataset.tenant_id,
- provider=dataset.embedding_model_provider,
- model_type=ModelType.TEXT_EMBEDDING,
- model=dataset.embedding_model
- )
- except LLMBadRequestError:
- raise ValueError(
- "No Embedding Model available. Please configure a valid provider "
- "in the Settings -> Model Provider.")
- except ProviderTokenNotInitError as ex:
- raise ValueError(f"The dataset in unavailable, due to: "
- f"{ex.description}")
- @staticmethod
- def update_dataset(dataset_id, data, user):
- filtered_data = {k: v for k, v in data.items() if v is not None or k == 'description'}
- dataset = DatasetService.get_dataset(dataset_id)
- DatasetService.check_dataset_permission(dataset, user)
- action = None
- if dataset.indexing_technique != data['indexing_technique']:
- # if update indexing_technique
- if data['indexing_technique'] == 'economy':
- action = 'remove'
- filtered_data['embedding_model'] = None
- filtered_data['embedding_model_provider'] = None
- filtered_data['collection_binding_id'] = None
- elif data['indexing_technique'] == 'high_quality':
- action = 'add'
- # get embedding model setting
- try:
- model_manager = ModelManager()
- embedding_model = model_manager.get_model_instance(
- tenant_id=current_user.current_tenant_id,
- provider=data['embedding_model_provider'],
- model_type=ModelType.TEXT_EMBEDDING,
- model=data['embedding_model']
- )
- filtered_data['embedding_model'] = embedding_model.model
- filtered_data['embedding_model_provider'] = embedding_model.provider
- dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
- embedding_model.provider,
- embedding_model.model
- )
- filtered_data['collection_binding_id'] = dataset_collection_binding.id
- except LLMBadRequestError:
- raise ValueError(
- "No Embedding Model available. Please configure a valid provider "
- "in the Settings -> Model Provider.")
- except ProviderTokenNotInitError as ex:
- raise ValueError(ex.description)
- else:
- if data['embedding_model_provider'] != dataset.embedding_model_provider or \
- data['embedding_model'] != dataset.embedding_model:
- action = 'update'
- try:
- model_manager = ModelManager()
- embedding_model = model_manager.get_model_instance(
- tenant_id=current_user.current_tenant_id,
- provider=data['embedding_model_provider'],
- model_type=ModelType.TEXT_EMBEDDING,
- model=data['embedding_model']
- )
- filtered_data['embedding_model'] = embedding_model.model
- filtered_data['embedding_model_provider'] = embedding_model.provider
- dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
- embedding_model.provider,
- embedding_model.model
- )
- filtered_data['collection_binding_id'] = dataset_collection_binding.id
- except LLMBadRequestError:
- raise ValueError(
- "No Embedding Model available. Please configure a valid provider "
- "in the Settings -> Model Provider.")
- except ProviderTokenNotInitError as ex:
- raise ValueError(ex.description)
- filtered_data['updated_by'] = user.id
- filtered_data['updated_at'] = datetime.datetime.now()
- # update Retrieval model
- filtered_data['retrieval_model'] = data['retrieval_model']
- dataset.query.filter_by(id=dataset_id).update(filtered_data)
- db.session.commit()
- if action:
- deal_dataset_vector_index_task.delay(dataset_id, action)
- return dataset
- @staticmethod
- def delete_dataset(dataset_id, user):
- # todo: cannot delete dataset if it is being processed
- dataset = DatasetService.get_dataset(dataset_id)
- if dataset is None:
- return False
- DatasetService.check_dataset_permission(dataset, user)
- dataset_was_deleted.send(dataset)
- db.session.delete(dataset)
- db.session.commit()
- return True
- @staticmethod
- def check_dataset_permission(dataset, user):
- if dataset.tenant_id != user.current_tenant_id:
- logging.debug(
- f'User {user.id} does not have permission to access dataset {dataset.id}')
- raise NoPermissionError(
- 'You do not have permission to access this dataset.')
- if dataset.permission == 'only_me' and dataset.created_by != user.id:
- logging.debug(
- f'User {user.id} does not have permission to access dataset {dataset.id}')
- raise NoPermissionError(
- 'You do not have permission to access this dataset.')
- @staticmethod
- def get_dataset_queries(dataset_id: str, page: int, per_page: int):
- dataset_queries = DatasetQuery.query.filter_by(dataset_id=dataset_id) \
- .order_by(db.desc(DatasetQuery.created_at)) \
- .paginate(
- page=page, per_page=per_page, max_per_page=100, error_out=False
- )
- return dataset_queries.items, dataset_queries.total
- @staticmethod
- def get_related_apps(dataset_id: str):
- return AppDatasetJoin.query.filter(AppDatasetJoin.dataset_id == dataset_id) \
- .order_by(db.desc(AppDatasetJoin.created_at)).all()
- class DocumentService:
- DEFAULT_RULES = {
- 'mode': 'custom',
- 'rules': {
- 'pre_processing_rules': [
- {'id': 'remove_extra_spaces', 'enabled': True},
- {'id': 'remove_urls_emails', 'enabled': False}
- ],
- 'segmentation': {
- 'delimiter': '\n',
- 'max_tokens': 500,
- 'chunk_overlap': 50
- }
- }
- }
- DOCUMENT_METADATA_SCHEMA = {
- "book": {
- "title": str,
- "language": str,
- "author": str,
- "publisher": str,
- "publication_date": str,
- "isbn": str,
- "category": str,
- },
- "web_page": {
- "title": str,
- "url": str,
- "language": str,
- "publish_date": str,
- "author/publisher": str,
- "topic/keywords": str,
- "description": str,
- },
- "paper": {
- "title": str,
- "language": str,
- "author": str,
- "publish_date": str,
- "journal/conference_name": str,
- "volume/issue/page_numbers": str,
- "doi": str,
- "topic/keywords": str,
- "abstract": str,
- },
- "social_media_post": {
- "platform": str,
- "author/username": str,
- "publish_date": str,
- "post_url": str,
- "topic/tags": str,
- },
- "wikipedia_entry": {
- "title": str,
- "language": str,
- "web_page_url": str,
- "last_edit_date": str,
- "editor/contributor": str,
- "summary/introduction": str,
- },
- "personal_document": {
- "title": str,
- "author": str,
- "creation_date": str,
- "last_modified_date": str,
- "document_type": str,
- "tags/category": str,
- },
- "business_document": {
- "title": str,
- "author": str,
- "creation_date": str,
- "last_modified_date": str,
- "document_type": str,
- "department/team": str,
- },
- "im_chat_log": {
- "chat_platform": str,
- "chat_participants/group_name": str,
- "start_date": str,
- "end_date": str,
- "summary": str,
- },
- "synced_from_notion": {
- "title": str,
- "language": str,
- "author/creator": str,
- "creation_date": str,
- "last_modified_date": str,
- "notion_page_link": str,
- "category/tags": str,
- "description": str,
- },
- "synced_from_github": {
- "repository_name": str,
- "repository_description": str,
- "repository_owner/organization": str,
- "code_filename": str,
- "code_file_path": str,
- "programming_language": str,
- "github_link": str,
- "open_source_license": str,
- "commit_date": str,
- "commit_author": str,
- },
- "others": dict
- }
- @staticmethod
- def get_document(dataset_id: str, document_id: str) -> Optional[Document]:
- document = db.session.query(Document).filter(
- Document.id == document_id,
- Document.dataset_id == dataset_id
- ).first()
- return document
- @staticmethod
- def get_document_by_id(document_id: str) -> Optional[Document]:
- document = db.session.query(Document).filter(
- Document.id == document_id
- ).first()
- return document
- @staticmethod
- def get_document_by_dataset_id(dataset_id: str) -> list[Document]:
- documents = db.session.query(Document).filter(
- Document.dataset_id == dataset_id,
- Document.enabled == True
- ).all()
- return documents
- @staticmethod
- def get_error_documents_by_dataset_id(dataset_id: str) -> list[Document]:
- documents = db.session.query(Document).filter(
- Document.dataset_id == dataset_id,
- Document.indexing_status.in_(['error', 'paused'])
- ).all()
- return documents
- @staticmethod
- def get_batch_documents(dataset_id: str, batch: str) -> list[Document]:
- documents = db.session.query(Document).filter(
- Document.batch == batch,
- Document.dataset_id == dataset_id,
- Document.tenant_id == current_user.current_tenant_id
- ).all()
- return documents
- @staticmethod
- def get_document_file_detail(file_id: str):
- file_detail = db.session.query(UploadFile). \
- filter(UploadFile.id == file_id). \
- one_or_none()
- return file_detail
- @staticmethod
- def check_archived(document):
- if document.archived:
- return True
- else:
- return False
- @staticmethod
- def delete_document(document):
- # trigger document_was_deleted signal
- document_was_deleted.send(document.id, dataset_id=document.dataset_id, doc_form=document.doc_form)
- db.session.delete(document)
- db.session.commit()
- @staticmethod
- def rename_document(dataset_id: str, document_id: str, name: str) -> Document:
- dataset = DatasetService.get_dataset(dataset_id)
- if not dataset:
- raise ValueError('Dataset not found.')
- document = DocumentService.get_document(dataset_id, document_id)
- if not document:
- raise ValueError('Document not found.')
- if document.tenant_id != current_user.current_tenant_id:
- raise ValueError('No permission.')
- document.name = name
- db.session.add(document)
- db.session.commit()
- return document
- @staticmethod
- def pause_document(document):
- if document.indexing_status not in ["waiting", "parsing", "cleaning", "splitting", "indexing"]:
- raise DocumentIndexingError()
- # update document to be paused
- document.is_paused = True
- document.paused_by = current_user.id
- document.paused_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
- db.session.add(document)
- db.session.commit()
- # set document paused flag
- indexing_cache_key = 'document_{}_is_paused'.format(document.id)
- redis_client.setnx(indexing_cache_key, "True")
- @staticmethod
- def recover_document(document):
- if not document.is_paused:
- raise DocumentIndexingError()
- # update document to be recover
- document.is_paused = False
- document.paused_by = None
- document.paused_at = None
- db.session.add(document)
- db.session.commit()
- # delete paused flag
- indexing_cache_key = 'document_{}_is_paused'.format(document.id)
- redis_client.delete(indexing_cache_key)
- # trigger async task
- recover_document_indexing_task.delay(document.dataset_id, document.id)
- @staticmethod
- def retry_document(dataset_id: str, documents: list[Document]):
- for document in documents:
- # retry document indexing
- document.indexing_status = 'waiting'
- db.session.add(document)
- db.session.commit()
- # add retry flag
- retry_indexing_cache_key = 'document_{}_is_retried'.format(document.id)
- redis_client.setex(retry_indexing_cache_key, 600, 1)
- # trigger async task
- document_ids = [document.id for document in documents]
- retry_document_indexing_task.delay(dataset_id, document_ids)
- @staticmethod
- def get_documents_position(dataset_id):
- document = Document.query.filter_by(dataset_id=dataset_id).order_by(Document.position.desc()).first()
- if document:
- return document.position + 1
- else:
- return 1
- @staticmethod
- def save_document_with_dataset_id(dataset: Dataset, document_data: dict,
- account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
- created_from: str = 'web'):
- # check document limit
- features = FeatureService.get_features(current_user.current_tenant_id)
- if features.billing.enabled:
- if 'original_document_id' not in document_data or not document_data['original_document_id']:
- count = 0
- if document_data["data_source"]["type"] == "upload_file":
- upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
- count = len(upload_file_list)
- elif document_data["data_source"]["type"] == "notion_import":
- notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
- for notion_info in notion_info_list:
- count = count + len(notion_info['pages'])
- batch_upload_limit = int(current_app.config['BATCH_UPLOAD_LIMIT'])
- if count > batch_upload_limit:
- raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
- DocumentService.check_documents_upload_quota(count, features)
- # if dataset is empty, update dataset data_source_type
- if not dataset.data_source_type:
- dataset.data_source_type = document_data["data_source"]["type"]
- if not dataset.indexing_technique:
- if 'indexing_technique' not in document_data \
- or document_data['indexing_technique'] not in Dataset.INDEXING_TECHNIQUE_LIST:
- raise ValueError("Indexing technique is required")
- dataset.indexing_technique = document_data["indexing_technique"]
- if document_data["indexing_technique"] == 'high_quality':
- model_manager = ModelManager()
- embedding_model = model_manager.get_default_model_instance(
- tenant_id=current_user.current_tenant_id,
- model_type=ModelType.TEXT_EMBEDDING
- )
- dataset.embedding_model = embedding_model.model
- dataset.embedding_model_provider = embedding_model.provider
- dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
- embedding_model.provider,
- embedding_model.model
- )
- dataset.collection_binding_id = dataset_collection_binding.id
- if not dataset.retrieval_model:
- default_retrieval_model = {
- 'search_method': 'semantic_search',
- 'reranking_enable': False,
- 'reranking_model': {
- 'reranking_provider_name': '',
- 'reranking_model_name': ''
- },
- 'top_k': 2,
- 'score_threshold_enabled': False
- }
- dataset.retrieval_model = document_data.get('retrieval_model') if document_data.get(
- 'retrieval_model') else default_retrieval_model
- documents = []
- batch = time.strftime('%Y%m%d%H%M%S') + str(random.randint(100000, 999999))
- if document_data.get("original_document_id"):
- document = DocumentService.update_document_with_dataset_id(dataset, document_data, account)
- documents.append(document)
- else:
- # save process rule
- if not dataset_process_rule:
- process_rule = document_data["process_rule"]
- if process_rule["mode"] == "custom":
- dataset_process_rule = DatasetProcessRule(
- dataset_id=dataset.id,
- mode=process_rule["mode"],
- rules=json.dumps(process_rule["rules"]),
- created_by=account.id
- )
- elif process_rule["mode"] == "automatic":
- dataset_process_rule = DatasetProcessRule(
- dataset_id=dataset.id,
- mode=process_rule["mode"],
- rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
- created_by=account.id
- )
- db.session.add(dataset_process_rule)
- db.session.commit()
- position = DocumentService.get_documents_position(dataset.id)
- document_ids = []
- duplicate_document_ids = []
- if document_data["data_source"]["type"] == "upload_file":
- upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
- for file_id in upload_file_list:
- file = db.session.query(UploadFile).filter(
- UploadFile.tenant_id == dataset.tenant_id,
- UploadFile.id == file_id
- ).first()
- # raise error if file not found
- if not file:
- raise FileNotExistsError()
- file_name = file.name
- data_source_info = {
- "upload_file_id": file_id,
- }
- # check duplicate
- if document_data.get('duplicate', False):
- document = Document.query.filter_by(
- dataset_id=dataset.id,
- tenant_id=current_user.current_tenant_id,
- data_source_type='upload_file',
- enabled=True,
- name=file_name
- ).first()
- if document:
- document.dataset_process_rule_id = dataset_process_rule.id
- document.updated_at = datetime.datetime.utcnow()
- document.created_from = created_from
- document.doc_form = document_data['doc_form']
- document.doc_language = document_data['doc_language']
- document.data_source_info = json.dumps(data_source_info)
- document.batch = batch
- document.indexing_status = 'waiting'
- db.session.add(document)
- documents.append(document)
- duplicate_document_ids.append(document.id)
- continue
- document = DocumentService.build_document(dataset, dataset_process_rule.id,
- document_data["data_source"]["type"],
- document_data["doc_form"],
- document_data["doc_language"],
- data_source_info, created_from, position,
- account, file_name, batch)
- db.session.add(document)
- db.session.flush()
- document_ids.append(document.id)
- documents.append(document)
- position += 1
- elif document_data["data_source"]["type"] == "notion_import":
- notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
- exist_page_ids = []
- exist_document = dict()
- documents = Document.query.filter_by(
- dataset_id=dataset.id,
- tenant_id=current_user.current_tenant_id,
- data_source_type='notion_import',
- enabled=True
- ).all()
- if documents:
- for document in documents:
- data_source_info = json.loads(document.data_source_info)
- exist_page_ids.append(data_source_info['notion_page_id'])
- exist_document[data_source_info['notion_page_id']] = document.id
- for notion_info in notion_info_list:
- workspace_id = notion_info['workspace_id']
- data_source_binding = DataSourceBinding.query.filter(
- db.and_(
- DataSourceBinding.tenant_id == current_user.current_tenant_id,
- DataSourceBinding.provider == 'notion',
- DataSourceBinding.disabled == False,
- DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
- )
- ).first()
- if not data_source_binding:
- raise ValueError('Data source binding not found.')
- for page in notion_info['pages']:
- if page['page_id'] not in exist_page_ids:
- data_source_info = {
- "notion_workspace_id": workspace_id,
- "notion_page_id": page['page_id'],
- "notion_page_icon": page['page_icon'],
- "type": page['type']
- }
- document = DocumentService.build_document(dataset, dataset_process_rule.id,
- document_data["data_source"]["type"],
- document_data["doc_form"],
- document_data["doc_language"],
- data_source_info, created_from, position,
- account, page['page_name'], batch)
- db.session.add(document)
- db.session.flush()
- document_ids.append(document.id)
- documents.append(document)
- position += 1
- else:
- exist_document.pop(page['page_id'])
- # delete not selected documents
- if len(exist_document) > 0:
- clean_notion_document_task.delay(list(exist_document.values()), dataset.id)
- db.session.commit()
- # trigger async task
- if document_ids:
- document_indexing_task.delay(dataset.id, document_ids)
- if duplicate_document_ids:
- duplicate_document_indexing_task.delay(dataset.id, duplicate_document_ids)
- return documents, batch
- @staticmethod
- def check_documents_upload_quota(count: int, features: FeatureModel):
- can_upload_size = features.documents_upload_quota.limit - features.documents_upload_quota.size
- if count > can_upload_size:
- raise ValueError(
- f'You have reached the limit of your subscription. Only {can_upload_size} documents can be uploaded.')
- @staticmethod
- def build_document(dataset: Dataset, process_rule_id: str, data_source_type: str, document_form: str,
- document_language: str, data_source_info: dict, created_from: str, position: int,
- account: Account,
- name: str, batch: str):
- document = Document(
- tenant_id=dataset.tenant_id,
- dataset_id=dataset.id,
- position=position,
- data_source_type=data_source_type,
- data_source_info=json.dumps(data_source_info),
- dataset_process_rule_id=process_rule_id,
- batch=batch,
- name=name,
- created_from=created_from,
- created_by=account.id,
- doc_form=document_form,
- doc_language=document_language
- )
- return document
- @staticmethod
- def get_tenant_documents_count():
- documents_count = Document.query.filter(Document.completed_at.isnot(None),
- Document.enabled == True,
- Document.archived == False,
- Document.tenant_id == current_user.current_tenant_id).count()
- return documents_count
- @staticmethod
- def update_document_with_dataset_id(dataset: Dataset, document_data: dict,
- account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
- created_from: str = 'web'):
- DatasetService.check_dataset_model_setting(dataset)
- document = DocumentService.get_document(dataset.id, document_data["original_document_id"])
- if document.display_status != 'available':
- raise ValueError("Document is not available")
- # update document name
- if document_data.get('name'):
- document.name = document_data['name']
- # save process rule
- if document_data.get('process_rule'):
- process_rule = document_data["process_rule"]
- if process_rule["mode"] == "custom":
- dataset_process_rule = DatasetProcessRule(
- dataset_id=dataset.id,
- mode=process_rule["mode"],
- rules=json.dumps(process_rule["rules"]),
- created_by=account.id
- )
- elif process_rule["mode"] == "automatic":
- dataset_process_rule = DatasetProcessRule(
- dataset_id=dataset.id,
- mode=process_rule["mode"],
- rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
- created_by=account.id
- )
- db.session.add(dataset_process_rule)
- db.session.commit()
- document.dataset_process_rule_id = dataset_process_rule.id
- # update document data source
- if document_data.get('data_source'):
- file_name = ''
- data_source_info = {}
- if document_data["data_source"]["type"] == "upload_file":
- upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
- for file_id in upload_file_list:
- file = db.session.query(UploadFile).filter(
- UploadFile.tenant_id == dataset.tenant_id,
- UploadFile.id == file_id
- ).first()
- # raise error if file not found
- if not file:
- raise FileNotExistsError()
- file_name = file.name
- data_source_info = {
- "upload_file_id": file_id,
- }
- elif document_data["data_source"]["type"] == "notion_import":
- notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
- for notion_info in notion_info_list:
- workspace_id = notion_info['workspace_id']
- data_source_binding = DataSourceBinding.query.filter(
- db.and_(
- DataSourceBinding.tenant_id == current_user.current_tenant_id,
- DataSourceBinding.provider == 'notion',
- DataSourceBinding.disabled == False,
- DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
- )
- ).first()
- if not data_source_binding:
- raise ValueError('Data source binding not found.')
- for page in notion_info['pages']:
- data_source_info = {
- "notion_workspace_id": workspace_id,
- "notion_page_id": page['page_id'],
- "notion_page_icon": page['page_icon'],
- "type": page['type']
- }
- document.data_source_type = document_data["data_source"]["type"]
- document.data_source_info = json.dumps(data_source_info)
- document.name = file_name
- # update document to be waiting
- document.indexing_status = 'waiting'
- document.completed_at = None
- document.processing_started_at = None
- document.parsing_completed_at = None
- document.cleaning_completed_at = None
- document.splitting_completed_at = None
- document.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
- document.created_from = created_from
- document.doc_form = document_data['doc_form']
- db.session.add(document)
- db.session.commit()
- # update document segment
- update_params = {
- DocumentSegment.status: 're_segment'
- }
- DocumentSegment.query.filter_by(document_id=document.id).update(update_params)
- db.session.commit()
- # trigger async task
- document_indexing_update_task.delay(document.dataset_id, document.id)
- return document
- @staticmethod
- def save_document_without_dataset_id(tenant_id: str, document_data: dict, account: Account):
- features = FeatureService.get_features(current_user.current_tenant_id)
- if features.billing.enabled:
- count = 0
- if document_data["data_source"]["type"] == "upload_file":
- upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
- count = len(upload_file_list)
- elif document_data["data_source"]["type"] == "notion_import":
- notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
- for notion_info in notion_info_list:
- count = count + len(notion_info['pages'])
- batch_upload_limit = int(current_app.config['BATCH_UPLOAD_LIMIT'])
- if count > batch_upload_limit:
- raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
- DocumentService.check_documents_upload_quota(count, features)
- embedding_model = None
- dataset_collection_binding_id = None
- retrieval_model = None
- if document_data['indexing_technique'] == 'high_quality':
- model_manager = ModelManager()
- embedding_model = model_manager.get_default_model_instance(
- tenant_id=current_user.current_tenant_id,
- model_type=ModelType.TEXT_EMBEDDING
- )
- dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
- embedding_model.provider,
- embedding_model.model
- )
- dataset_collection_binding_id = dataset_collection_binding.id
- if document_data.get('retrieval_model'):
- retrieval_model = document_data['retrieval_model']
- else:
- default_retrieval_model = {
- 'search_method': 'semantic_search',
- 'reranking_enable': False,
- 'reranking_model': {
- 'reranking_provider_name': '',
- 'reranking_model_name': ''
- },
- 'top_k': 2,
- 'score_threshold_enabled': False
- }
- retrieval_model = default_retrieval_model
- # save dataset
- dataset = Dataset(
- tenant_id=tenant_id,
- name='',
- data_source_type=document_data["data_source"]["type"],
- indexing_technique=document_data["indexing_technique"],
- created_by=account.id,
- embedding_model=embedding_model.model if embedding_model else None,
- embedding_model_provider=embedding_model.provider if embedding_model else None,
- collection_binding_id=dataset_collection_binding_id,
- retrieval_model=retrieval_model
- )
- db.session.add(dataset)
- db.session.flush()
- documents, batch = DocumentService.save_document_with_dataset_id(dataset, document_data, account)
- cut_length = 18
- cut_name = documents[0].name[:cut_length]
- dataset.name = cut_name + '...'
- dataset.description = 'useful for when you want to answer queries about the ' + documents[0].name
- db.session.commit()
- return dataset, documents, batch
- @classmethod
- def document_create_args_validate(cls, args: dict):
- if 'original_document_id' not in args or not args['original_document_id']:
- DocumentService.data_source_args_validate(args)
- DocumentService.process_rule_args_validate(args)
- else:
- if ('data_source' not in args and not args['data_source']) \
- and ('process_rule' not in args and not args['process_rule']):
- raise ValueError("Data source or Process rule is required")
- else:
- if args.get('data_source'):
- DocumentService.data_source_args_validate(args)
- if args.get('process_rule'):
- DocumentService.process_rule_args_validate(args)
- @classmethod
- def data_source_args_validate(cls, args: dict):
- if 'data_source' not in args or not args['data_source']:
- raise ValueError("Data source is required")
- if not isinstance(args['data_source'], dict):
- raise ValueError("Data source is invalid")
- if 'type' not in args['data_source'] or not args['data_source']['type']:
- raise ValueError("Data source type is required")
- if args['data_source']['type'] not in Document.DATA_SOURCES:
- raise ValueError("Data source type is invalid")
- if 'info_list' not in args['data_source'] or not args['data_source']['info_list']:
- raise ValueError("Data source info is required")
- if args['data_source']['type'] == 'upload_file':
- if 'file_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
- 'file_info_list']:
- raise ValueError("File source info is required")
- if args['data_source']['type'] == 'notion_import':
- if 'notion_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
- 'notion_info_list']:
- raise ValueError("Notion source info is required")
- @classmethod
- def process_rule_args_validate(cls, args: dict):
- if 'process_rule' not in args or not args['process_rule']:
- raise ValueError("Process rule is required")
- if not isinstance(args['process_rule'], dict):
- raise ValueError("Process rule is invalid")
- if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
- raise ValueError("Process rule mode is required")
- if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
- raise ValueError("Process rule mode is invalid")
- if args['process_rule']['mode'] == 'automatic':
- args['process_rule']['rules'] = {}
- else:
- if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
- raise ValueError("Process rule rules is required")
- if not isinstance(args['process_rule']['rules'], dict):
- raise ValueError("Process rule rules is invalid")
- if 'pre_processing_rules' not in args['process_rule']['rules'] \
- or args['process_rule']['rules']['pre_processing_rules'] is None:
- raise ValueError("Process rule pre_processing_rules is required")
- if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
- raise ValueError("Process rule pre_processing_rules is invalid")
- unique_pre_processing_rule_dicts = {}
- for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
- if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
- raise ValueError("Process rule pre_processing_rules id is required")
- if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
- raise ValueError("Process rule pre_processing_rules id is invalid")
- if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
- raise ValueError("Process rule pre_processing_rules enabled is required")
- if not isinstance(pre_processing_rule['enabled'], bool):
- raise ValueError("Process rule pre_processing_rules enabled is invalid")
- unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
- args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
- if 'segmentation' not in args['process_rule']['rules'] \
- or args['process_rule']['rules']['segmentation'] is None:
- raise ValueError("Process rule segmentation is required")
- if not isinstance(args['process_rule']['rules']['segmentation'], dict):
- raise ValueError("Process rule segmentation is invalid")
- if 'separator' not in args['process_rule']['rules']['segmentation'] \
- or not args['process_rule']['rules']['segmentation']['separator']:
- raise ValueError("Process rule segmentation separator is required")
- if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
- raise ValueError("Process rule segmentation separator is invalid")
- if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
- or not args['process_rule']['rules']['segmentation']['max_tokens']:
- raise ValueError("Process rule segmentation max_tokens is required")
- if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
- raise ValueError("Process rule segmentation max_tokens is invalid")
- @classmethod
- def estimate_args_validate(cls, args: dict):
- if 'info_list' not in args or not args['info_list']:
- raise ValueError("Data source info is required")
- if not isinstance(args['info_list'], dict):
- raise ValueError("Data info is invalid")
- if 'process_rule' not in args or not args['process_rule']:
- raise ValueError("Process rule is required")
- if not isinstance(args['process_rule'], dict):
- raise ValueError("Process rule is invalid")
- if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
- raise ValueError("Process rule mode is required")
- if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
- raise ValueError("Process rule mode is invalid")
- if args['process_rule']['mode'] == 'automatic':
- args['process_rule']['rules'] = {}
- else:
- if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
- raise ValueError("Process rule rules is required")
- if not isinstance(args['process_rule']['rules'], dict):
- raise ValueError("Process rule rules is invalid")
- if 'pre_processing_rules' not in args['process_rule']['rules'] \
- or args['process_rule']['rules']['pre_processing_rules'] is None:
- raise ValueError("Process rule pre_processing_rules is required")
- if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
- raise ValueError("Process rule pre_processing_rules is invalid")
- unique_pre_processing_rule_dicts = {}
- for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
- if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
- raise ValueError("Process rule pre_processing_rules id is required")
- if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
- raise ValueError("Process rule pre_processing_rules id is invalid")
- if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
- raise ValueError("Process rule pre_processing_rules enabled is required")
- if not isinstance(pre_processing_rule['enabled'], bool):
- raise ValueError("Process rule pre_processing_rules enabled is invalid")
- unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
- args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
- if 'segmentation' not in args['process_rule']['rules'] \
- or args['process_rule']['rules']['segmentation'] is None:
- raise ValueError("Process rule segmentation is required")
- if not isinstance(args['process_rule']['rules']['segmentation'], dict):
- raise ValueError("Process rule segmentation is invalid")
- if 'separator' not in args['process_rule']['rules']['segmentation'] \
- or not args['process_rule']['rules']['segmentation']['separator']:
- raise ValueError("Process rule segmentation separator is required")
- if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
- raise ValueError("Process rule segmentation separator is invalid")
- if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
- or not args['process_rule']['rules']['segmentation']['max_tokens']:
- raise ValueError("Process rule segmentation max_tokens is required")
- if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
- raise ValueError("Process rule segmentation max_tokens is invalid")
- class SegmentService:
- @classmethod
- def segment_create_args_validate(cls, args: dict, document: Document):
- if document.doc_form == 'qa_model':
- if 'answer' not in args or not args['answer']:
- raise ValueError("Answer is required")
- if not args['answer'].strip():
- raise ValueError("Answer is empty")
- if 'content' not in args or not args['content'] or not args['content'].strip():
- raise ValueError("Content is empty")
- @classmethod
- def create_segment(cls, args: dict, document: Document, dataset: Dataset):
- content = args['content']
- doc_id = str(uuid.uuid4())
- segment_hash = helper.generate_text_hash(content)
- tokens = 0
- if dataset.indexing_technique == 'high_quality':
- model_manager = ModelManager()
- embedding_model = model_manager.get_model_instance(
- tenant_id=current_user.current_tenant_id,
- provider=dataset.embedding_model_provider,
- model_type=ModelType.TEXT_EMBEDDING,
- model=dataset.embedding_model
- )
- # calc embedding use tokens
- tokens = embedding_model.get_text_embedding_num_tokens(
- texts=[content]
- )
- lock_name = 'add_segment_lock_document_id_{}'.format(document.id)
- with redis_client.lock(lock_name, timeout=600):
- max_position = db.session.query(func.max(DocumentSegment.position)).filter(
- DocumentSegment.document_id == document.id
- ).scalar()
- segment_document = DocumentSegment(
- tenant_id=current_user.current_tenant_id,
- dataset_id=document.dataset_id,
- document_id=document.id,
- index_node_id=doc_id,
- index_node_hash=segment_hash,
- position=max_position + 1 if max_position else 1,
- content=content,
- word_count=len(content),
- tokens=tokens,
- status='completed',
- indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
- completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
- created_by=current_user.id
- )
- if document.doc_form == 'qa_model':
- segment_document.answer = args['answer']
- db.session.add(segment_document)
- db.session.commit()
- # save vector index
- try:
- VectorService.create_segments_vector([args['keywords']], [segment_document], dataset)
- except Exception as e:
- logging.exception("create segment index failed")
- segment_document.enabled = False
- segment_document.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
- segment_document.status = 'error'
- segment_document.error = str(e)
- db.session.commit()
- segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_document.id).first()
- return segment
- @classmethod
- def multi_create_segment(cls, segments: list, document: Document, dataset: Dataset):
- lock_name = 'multi_add_segment_lock_document_id_{}'.format(document.id)
- with redis_client.lock(lock_name, timeout=600):
- embedding_model = None
- if dataset.indexing_technique == 'high_quality':
- model_manager = ModelManager()
- embedding_model = model_manager.get_model_instance(
- tenant_id=current_user.current_tenant_id,
- provider=dataset.embedding_model_provider,
- model_type=ModelType.TEXT_EMBEDDING,
- model=dataset.embedding_model
- )
- max_position = db.session.query(func.max(DocumentSegment.position)).filter(
- DocumentSegment.document_id == document.id
- ).scalar()
- pre_segment_data_list = []
- segment_data_list = []
- keywords_list = []
- for segment_item in segments:
- content = segment_item['content']
- doc_id = str(uuid.uuid4())
- segment_hash = helper.generate_text_hash(content)
- tokens = 0
- if dataset.indexing_technique == 'high_quality' and embedding_model:
- # calc embedding use tokens
- tokens = embedding_model.get_text_embedding_num_tokens(
- texts=[content]
- )
- segment_document = DocumentSegment(
- tenant_id=current_user.current_tenant_id,
- dataset_id=document.dataset_id,
- document_id=document.id,
- index_node_id=doc_id,
- index_node_hash=segment_hash,
- position=max_position + 1 if max_position else 1,
- content=content,
- word_count=len(content),
- tokens=tokens,
- status='completed',
- indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
- completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
- created_by=current_user.id
- )
- if document.doc_form == 'qa_model':
- segment_document.answer = segment_item['answer']
- db.session.add(segment_document)
- segment_data_list.append(segment_document)
- pre_segment_data_list.append(segment_document)
- keywords_list.append(segment_item['keywords'])
- try:
- # save vector index
- VectorService.create_segments_vector(keywords_list, pre_segment_data_list, dataset)
- except Exception as e:
- logging.exception("create segment index failed")
- for segment_document in segment_data_list:
- segment_document.enabled = False
- segment_document.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
- segment_document.status = 'error'
- segment_document.error = str(e)
- db.session.commit()
- return segment_data_list
- @classmethod
- def update_segment(cls, args: dict, segment: DocumentSegment, document: Document, dataset: Dataset):
- indexing_cache_key = 'segment_{}_indexing'.format(segment.id)
- cache_result = redis_client.get(indexing_cache_key)
- if cache_result is not None:
- raise ValueError("Segment is indexing, please try again later")
- if 'enabled' in args and args['enabled'] is not None:
- action = args['enabled']
- if segment.enabled != action:
- if not action:
- segment.enabled = action
- segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
- segment.disabled_by = current_user.id
- db.session.add(segment)
- db.session.commit()
- # Set cache to prevent indexing the same segment multiple times
- redis_client.setex(indexing_cache_key, 600, 1)
- disable_segment_from_index_task.delay(segment.id)
- return segment
- if not segment.enabled:
- if 'enabled' in args and args['enabled'] is not None:
- if not args['enabled']:
- raise ValueError("Can't update disabled segment")
- else:
- raise ValueError("Can't update disabled segment")
- try:
- content = args['content']
- if segment.content == content:
- if document.doc_form == 'qa_model':
- segment.answer = args['answer']
- if args.get('keywords'):
- segment.keywords = args['keywords']
- segment.enabled = True
- segment.disabled_at = None
- segment.disabled_by = None
- db.session.add(segment)
- db.session.commit()
- # update segment index task
- if args['keywords']:
- keyword = Keyword(dataset)
- keyword.delete_by_ids([segment.index_node_id])
- document = RAGDocument(
- page_content=segment.content,
- metadata={
- "doc_id": segment.index_node_id,
- "doc_hash": segment.index_node_hash,
- "document_id": segment.document_id,
- "dataset_id": segment.dataset_id,
- }
- )
- keyword.add_texts([document], keywords_list=[args['keywords']])
- else:
- segment_hash = helper.generate_text_hash(content)
- tokens = 0
- if dataset.indexing_technique == 'high_quality':
- model_manager = ModelManager()
- embedding_model = model_manager.get_model_instance(
- tenant_id=current_user.current_tenant_id,
- provider=dataset.embedding_model_provider,
- model_type=ModelType.TEXT_EMBEDDING,
- model=dataset.embedding_model
- )
- # calc embedding use tokens
- tokens = embedding_model.get_text_embedding_num_tokens(
- texts=[content]
- )
- segment.content = content
- segment.index_node_hash = segment_hash
- segment.word_count = len(content)
- segment.tokens = tokens
- segment.status = 'completed'
- segment.indexing_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
- segment.completed_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
- segment.updated_by = current_user.id
- segment.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
- segment.enabled = True
- segment.disabled_at = None
- segment.disabled_by = None
- if document.doc_form == 'qa_model':
- segment.answer = args['answer']
- db.session.add(segment)
- db.session.commit()
- # update segment vector index
- VectorService.update_segment_vector(args['keywords'], segment, dataset)
- except Exception as e:
- logging.exception("update segment index failed")
- segment.enabled = False
- segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
- segment.status = 'error'
- segment.error = str(e)
- db.session.commit()
- segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment.id).first()
- return segment
- @classmethod
- def delete_segment(cls, segment: DocumentSegment, document: Document, dataset: Dataset):
- indexing_cache_key = 'segment_{}_delete_indexing'.format(segment.id)
- cache_result = redis_client.get(indexing_cache_key)
- if cache_result is not None:
- raise ValueError("Segment is deleting.")
- # enabled segment need to delete index
- if segment.enabled:
- # send delete segment index task
- redis_client.setex(indexing_cache_key, 600, 1)
- delete_segment_from_index_task.delay(segment.id, segment.index_node_id, dataset.id, document.id)
- db.session.delete(segment)
- db.session.commit()
- class DatasetCollectionBindingService:
- @classmethod
- def get_dataset_collection_binding(cls, provider_name: str, model_name: str,
- collection_type: str = 'dataset') -> DatasetCollectionBinding:
- dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
- filter(DatasetCollectionBinding.provider_name == provider_name,
- DatasetCollectionBinding.model_name == model_name,
- DatasetCollectionBinding.type == collection_type). \
- order_by(DatasetCollectionBinding.created_at). \
- first()
- if not dataset_collection_binding:
- dataset_collection_binding = DatasetCollectionBinding(
- provider_name=provider_name,
- model_name=model_name,
- collection_name=Dataset.gen_collection_name_by_id(str(uuid.uuid4())),
- type=collection_type
- )
- db.session.add(dataset_collection_binding)
- db.session.commit()
- return dataset_collection_binding
- @classmethod
- def get_dataset_collection_binding_by_id_and_type(cls, collection_binding_id: str,
- collection_type: str = 'dataset') -> DatasetCollectionBinding:
- dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
- filter(DatasetCollectionBinding.id == collection_binding_id,
- DatasetCollectionBinding.type == collection_type). \
- order_by(DatasetCollectionBinding.created_at). \
- first()
- return dataset_collection_binding
|