| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879 | 
							- import concurrent.futures
 
- import datetime
 
- import json
 
- import logging
 
- import re
 
- import threading
 
- import time
 
- import uuid
 
- from typing import Optional, cast
 
- from flask import Flask, current_app
 
- from flask_login import current_user
 
- from sqlalchemy.orm.exc import ObjectDeletedError
 
- from configs import dify_config
 
- from core.errors.error import ProviderTokenNotInitError
 
- from core.llm_generator.llm_generator import LLMGenerator
 
- from core.model_manager import ModelInstance, ModelManager
 
- from core.model_runtime.entities.model_entities import ModelType
 
- from core.rag.cleaner.clean_processor import CleanProcessor
 
- from core.rag.datasource.keyword.keyword_factory import Keyword
 
- from core.rag.docstore.dataset_docstore import DatasetDocumentStore
 
- from core.rag.extractor.entity.extract_setting import ExtractSetting
 
- from core.rag.index_processor.index_processor_base import BaseIndexProcessor
 
- from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
 
- from core.rag.models.document import Document
 
- from core.rag.splitter.fixed_text_splitter import (
 
-     EnhanceRecursiveCharacterTextSplitter,
 
-     FixedRecursiveCharacterTextSplitter,
 
- )
 
- from core.rag.splitter.text_splitter import TextSplitter
 
- from core.tools.utils.text_processing_utils import remove_leading_symbols
 
- from core.tools.utils.web_reader_tool import get_image_upload_file_ids
 
- from extensions.ext_database import db
 
- from extensions.ext_redis import redis_client
 
- from extensions.ext_storage import storage
 
- from libs import helper
 
- from models.dataset import Dataset, DatasetProcessRule, DocumentSegment
 
- from models.dataset import Document as DatasetDocument
 
- from models.model import UploadFile
 
- from services.feature_service import FeatureService
 
- class IndexingRunner:
 
-     def __init__(self):
 
-         self.storage = storage
 
-         self.model_manager = ModelManager()
 
-     def run(self, dataset_documents: list[DatasetDocument]):
 
-         """Run the indexing process."""
 
-         for dataset_document in dataset_documents:
 
-             try:
 
-                 # get dataset
 
-                 dataset = Dataset.query.filter_by(id=dataset_document.dataset_id).first()
 
-                 if not dataset:
 
-                     raise ValueError("no dataset found")
 
-                 # get the process rule
 
-                 processing_rule = (
 
-                     db.session.query(DatasetProcessRule)
 
-                     .filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id)
 
-                     .first()
 
-                 )
 
-                 index_type = dataset_document.doc_form
 
-                 index_processor = IndexProcessorFactory(index_type).init_index_processor()
 
-                 # extract
 
-                 text_docs = self._extract(index_processor, dataset_document, processing_rule.to_dict())
 
-                 # transform
 
-                 documents = self._transform(
 
-                     index_processor, dataset, text_docs, dataset_document.doc_language, processing_rule.to_dict()
 
-                 )
 
-                 # save segment
 
-                 self._load_segments(dataset, dataset_document, documents)
 
-                 # load
 
-                 self._load(
 
-                     index_processor=index_processor,
 
-                     dataset=dataset,
 
-                     dataset_document=dataset_document,
 
-                     documents=documents,
 
-                 )
 
-             except DocumentIsPausedError:
 
-                 raise DocumentIsPausedError("Document paused, document id: {}".format(dataset_document.id))
 
-             except ProviderTokenNotInitError as e:
 
-                 dataset_document.indexing_status = "error"
 
-                 dataset_document.error = str(e.description)
 
-                 dataset_document.stopped_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
 
-                 db.session.commit()
 
-             except ObjectDeletedError:
 
-                 logging.warning("Document deleted, document id: {}".format(dataset_document.id))
 
-             except Exception as e:
 
-                 logging.exception("consume document failed")
 
-                 dataset_document.indexing_status = "error"
 
-                 dataset_document.error = str(e)
 
-                 dataset_document.stopped_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
 
-                 db.session.commit()
 
-     def run_in_splitting_status(self, dataset_document: DatasetDocument):
 
-         """Run the indexing process when the index_status is splitting."""
 
-         try:
 
-             # get dataset
 
-             dataset = Dataset.query.filter_by(id=dataset_document.dataset_id).first()
 
-             if not dataset:
 
-                 raise ValueError("no dataset found")
 
-             # get exist document_segment list and delete
 
-             document_segments = DocumentSegment.query.filter_by(
 
-                 dataset_id=dataset.id, document_id=dataset_document.id
 
-             ).all()
 
-             for document_segment in document_segments:
 
-                 db.session.delete(document_segment)
 
-             db.session.commit()
 
-             # get the process rule
 
-             processing_rule = (
 
-                 db.session.query(DatasetProcessRule)
 
-                 .filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id)
 
-                 .first()
 
-             )
 
-             index_type = dataset_document.doc_form
 
-             index_processor = IndexProcessorFactory(index_type).init_index_processor()
 
-             # extract
 
-             text_docs = self._extract(index_processor, dataset_document, processing_rule.to_dict())
 
-             # transform
 
-             documents = self._transform(
 
-                 index_processor, dataset, text_docs, dataset_document.doc_language, processing_rule.to_dict()
 
-             )
 
-             # save segment
 
-             self._load_segments(dataset, dataset_document, documents)
 
-             # load
 
-             self._load(
 
-                 index_processor=index_processor, dataset=dataset, dataset_document=dataset_document, documents=documents
 
-             )
 
-         except DocumentIsPausedError:
 
-             raise DocumentIsPausedError("Document paused, document id: {}".format(dataset_document.id))
 
-         except ProviderTokenNotInitError as e:
 
-             dataset_document.indexing_status = "error"
 
-             dataset_document.error = str(e.description)
 
-             dataset_document.stopped_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
 
-             db.session.commit()
 
-         except Exception as e:
 
-             logging.exception("consume document failed")
 
-             dataset_document.indexing_status = "error"
 
-             dataset_document.error = str(e)
 
-             dataset_document.stopped_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
 
-             db.session.commit()
 
-     def run_in_indexing_status(self, dataset_document: DatasetDocument):
 
-         """Run the indexing process when the index_status is indexing."""
 
-         try:
 
-             # get dataset
 
-             dataset = Dataset.query.filter_by(id=dataset_document.dataset_id).first()
 
-             if not dataset:
 
-                 raise ValueError("no dataset found")
 
-             # get exist document_segment list and delete
 
-             document_segments = DocumentSegment.query.filter_by(
 
-                 dataset_id=dataset.id, document_id=dataset_document.id
 
-             ).all()
 
-             documents = []
 
-             if document_segments:
 
-                 for document_segment in document_segments:
 
-                     # transform segment to node
 
-                     if document_segment.status != "completed":
 
-                         document = Document(
 
-                             page_content=document_segment.content,
 
-                             metadata={
 
-                                 "doc_id": document_segment.index_node_id,
 
-                                 "doc_hash": document_segment.index_node_hash,
 
-                                 "document_id": document_segment.document_id,
 
-                                 "dataset_id": document_segment.dataset_id,
 
-                             },
 
-                         )
 
-                         documents.append(document)
 
-             # build index
 
-             # get the process rule
 
-             processing_rule = (
 
-                 db.session.query(DatasetProcessRule)
 
-                 .filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id)
 
-                 .first()
 
-             )
 
-             index_type = dataset_document.doc_form
 
-             index_processor = IndexProcessorFactory(index_type).init_index_processor()
 
-             self._load(
 
-                 index_processor=index_processor, dataset=dataset, dataset_document=dataset_document, documents=documents
 
-             )
 
-         except DocumentIsPausedError:
 
-             raise DocumentIsPausedError("Document paused, document id: {}".format(dataset_document.id))
 
-         except ProviderTokenNotInitError as e:
 
-             dataset_document.indexing_status = "error"
 
-             dataset_document.error = str(e.description)
 
-             dataset_document.stopped_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
 
-             db.session.commit()
 
-         except Exception as e:
 
-             logging.exception("consume document failed")
 
-             dataset_document.indexing_status = "error"
 
-             dataset_document.error = str(e)
 
-             dataset_document.stopped_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
 
-             db.session.commit()
 
-     def indexing_estimate(
 
-         self,
 
-         tenant_id: str,
 
-         extract_settings: list[ExtractSetting],
 
-         tmp_processing_rule: dict,
 
-         doc_form: Optional[str] = None,
 
-         doc_language: str = "English",
 
-         dataset_id: Optional[str] = None,
 
-         indexing_technique: str = "economy",
 
-     ) -> dict:
 
-         """
 
-         Estimate the indexing for the document.
 
-         """
 
-         # check document limit
 
-         features = FeatureService.get_features(tenant_id)
 
-         if features.billing.enabled:
 
-             count = len(extract_settings)
 
-             batch_upload_limit = dify_config.BATCH_UPLOAD_LIMIT
 
-             if count > batch_upload_limit:
 
-                 raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
 
-         embedding_model_instance = None
 
-         if dataset_id:
 
-             dataset = Dataset.query.filter_by(id=dataset_id).first()
 
-             if not dataset:
 
-                 raise ValueError("Dataset not found.")
 
-             if dataset.indexing_technique == "high_quality" or indexing_technique == "high_quality":
 
-                 if dataset.embedding_model_provider:
 
-                     embedding_model_instance = self.model_manager.get_model_instance(
 
-                         tenant_id=tenant_id,
 
-                         provider=dataset.embedding_model_provider,
 
-                         model_type=ModelType.TEXT_EMBEDDING,
 
-                         model=dataset.embedding_model,
 
-                     )
 
-                 else:
 
-                     embedding_model_instance = self.model_manager.get_default_model_instance(
 
-                         tenant_id=tenant_id,
 
-                         model_type=ModelType.TEXT_EMBEDDING,
 
-                     )
 
-         else:
 
-             if indexing_technique == "high_quality":
 
-                 embedding_model_instance = self.model_manager.get_default_model_instance(
 
-                     tenant_id=tenant_id,
 
-                     model_type=ModelType.TEXT_EMBEDDING,
 
-                 )
 
-         preview_texts = []
 
-         total_segments = 0
 
-         index_type = doc_form
 
-         index_processor = IndexProcessorFactory(index_type).init_index_processor()
 
-         all_text_docs = []
 
-         for extract_setting in extract_settings:
 
-             # extract
 
-             text_docs = index_processor.extract(extract_setting, process_rule_mode=tmp_processing_rule["mode"])
 
-             all_text_docs.extend(text_docs)
 
-             processing_rule = DatasetProcessRule(
 
-                 mode=tmp_processing_rule["mode"], rules=json.dumps(tmp_processing_rule["rules"])
 
-             )
 
-             # get splitter
 
-             splitter = self._get_splitter(processing_rule, embedding_model_instance)
 
-             # split to documents
 
-             documents = self._split_to_documents_for_estimate(
 
-                 text_docs=text_docs, splitter=splitter, processing_rule=processing_rule
 
-             )
 
-             total_segments += len(documents)
 
-             for document in documents:
 
-                 if len(preview_texts) < 5:
 
-                     preview_texts.append(document.page_content)
 
-                 # delete image files and related db records
 
-                 image_upload_file_ids = get_image_upload_file_ids(document.page_content)
 
-                 for upload_file_id in image_upload_file_ids:
 
-                     image_file = db.session.query(UploadFile).filter(UploadFile.id == upload_file_id).first()
 
-                     try:
 
-                         storage.delete(image_file.key)
 
-                     except Exception:
 
-                         logging.exception(
 
-                             "Delete image_files failed while indexing_estimate, \
 
-                                           image_upload_file_is: {}".format(upload_file_id)
 
-                         )
 
-                     db.session.delete(image_file)
 
-         if doc_form and doc_form == "qa_model":
 
-             if len(preview_texts) > 0:
 
-                 # qa model document
 
-                 response = LLMGenerator.generate_qa_document(
 
-                     current_user.current_tenant_id, preview_texts[0], doc_language
 
-                 )
 
-                 document_qa_list = self.format_split_text(response)
 
-                 return {"total_segments": total_segments * 20, "qa_preview": document_qa_list, "preview": preview_texts}
 
-         return {"total_segments": total_segments, "preview": preview_texts}
 
-     def _extract(
 
-         self, index_processor: BaseIndexProcessor, dataset_document: DatasetDocument, process_rule: dict
 
-     ) -> list[Document]:
 
-         # load file
 
-         if dataset_document.data_source_type not in {"upload_file", "notion_import", "website_crawl"}:
 
-             return []
 
-         data_source_info = dataset_document.data_source_info_dict
 
-         text_docs = []
 
-         if dataset_document.data_source_type == "upload_file":
 
-             if not data_source_info or "upload_file_id" not in data_source_info:
 
-                 raise ValueError("no upload file found")
 
-             file_detail = (
 
-                 db.session.query(UploadFile).filter(UploadFile.id == data_source_info["upload_file_id"]).one_or_none()
 
-             )
 
-             if file_detail:
 
-                 extract_setting = ExtractSetting(
 
-                     datasource_type="upload_file", upload_file=file_detail, document_model=dataset_document.doc_form
 
-                 )
 
-                 text_docs = index_processor.extract(extract_setting, process_rule_mode=process_rule["mode"])
 
-         elif dataset_document.data_source_type == "notion_import":
 
-             if (
 
-                 not data_source_info
 
-                 or "notion_workspace_id" not in data_source_info
 
-                 or "notion_page_id" not in data_source_info
 
-             ):
 
-                 raise ValueError("no notion import info found")
 
-             extract_setting = ExtractSetting(
 
-                 datasource_type="notion_import",
 
-                 notion_info={
 
-                     "notion_workspace_id": data_source_info["notion_workspace_id"],
 
-                     "notion_obj_id": data_source_info["notion_page_id"],
 
-                     "notion_page_type": data_source_info["type"],
 
-                     "document": dataset_document,
 
-                     "tenant_id": dataset_document.tenant_id,
 
-                 },
 
-                 document_model=dataset_document.doc_form,
 
-             )
 
-             text_docs = index_processor.extract(extract_setting, process_rule_mode=process_rule["mode"])
 
-         elif dataset_document.data_source_type == "website_crawl":
 
-             if (
 
-                 not data_source_info
 
-                 or "provider" not in data_source_info
 
-                 or "url" not in data_source_info
 
-                 or "job_id" not in data_source_info
 
-             ):
 
-                 raise ValueError("no website import info found")
 
-             extract_setting = ExtractSetting(
 
-                 datasource_type="website_crawl",
 
-                 website_info={
 
-                     "provider": data_source_info["provider"],
 
-                     "job_id": data_source_info["job_id"],
 
-                     "tenant_id": dataset_document.tenant_id,
 
-                     "url": data_source_info["url"],
 
-                     "mode": data_source_info["mode"],
 
-                     "only_main_content": data_source_info["only_main_content"],
 
-                 },
 
-                 document_model=dataset_document.doc_form,
 
-             )
 
-             text_docs = index_processor.extract(extract_setting, process_rule_mode=process_rule["mode"])
 
-         # update document status to splitting
 
-         self._update_document_index_status(
 
-             document_id=dataset_document.id,
 
-             after_indexing_status="splitting",
 
-             extra_update_params={
 
-                 DatasetDocument.word_count: sum(len(text_doc.page_content) for text_doc in text_docs),
 
-                 DatasetDocument.parsing_completed_at: datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
 
-             },
 
-         )
 
-         # replace doc id to document model id
 
-         text_docs = cast(list[Document], text_docs)
 
-         for text_doc in text_docs:
 
-             text_doc.metadata["document_id"] = dataset_document.id
 
-             text_doc.metadata["dataset_id"] = dataset_document.dataset_id
 
-         return text_docs
 
-     @staticmethod
 
-     def filter_string(text):
 
-         text = re.sub(r"<\|", "<", text)
 
-         text = re.sub(r"\|>", ">", text)
 
-         text = re.sub(r"[\x00-\x08\x0B\x0C\x0E-\x1F\x7F\xEF\xBF\xBE]", "", text)
 
-         # Unicode  U+FFFE
 
-         text = re.sub("\ufffe", "", text)
 
-         return text
 
-     @staticmethod
 
-     def _get_splitter(
 
-         processing_rule: DatasetProcessRule, embedding_model_instance: Optional[ModelInstance]
 
-     ) -> TextSplitter:
 
-         """
 
-         Get the NodeParser object according to the processing rule.
 
-         """
 
-         if processing_rule.mode == "custom":
 
-             # The user-defined segmentation rule
 
-             rules = json.loads(processing_rule.rules)
 
-             segmentation = rules["segmentation"]
 
-             max_segmentation_tokens_length = dify_config.INDEXING_MAX_SEGMENTATION_TOKENS_LENGTH
 
-             if segmentation["max_tokens"] < 50 or segmentation["max_tokens"] > max_segmentation_tokens_length:
 
-                 raise ValueError(f"Custom segment length should be between 50 and {max_segmentation_tokens_length}.")
 
-             separator = segmentation["separator"]
 
-             if separator:
 
-                 separator = separator.replace("\\n", "\n")
 
-             if segmentation.get("chunk_overlap"):
 
-                 chunk_overlap = segmentation["chunk_overlap"]
 
-             else:
 
-                 chunk_overlap = 0
 
-             character_splitter = FixedRecursiveCharacterTextSplitter.from_encoder(
 
-                 chunk_size=segmentation["max_tokens"],
 
-                 chunk_overlap=chunk_overlap,
 
-                 fixed_separator=separator,
 
-                 separators=["\n\n", "。", ". ", " ", ""],
 
-                 embedding_model_instance=embedding_model_instance,
 
-             )
 
-         else:
 
-             # Automatic segmentation
 
-             character_splitter = EnhanceRecursiveCharacterTextSplitter.from_encoder(
 
-                 chunk_size=DatasetProcessRule.AUTOMATIC_RULES["segmentation"]["max_tokens"],
 
-                 chunk_overlap=DatasetProcessRule.AUTOMATIC_RULES["segmentation"]["chunk_overlap"],
 
-                 separators=["\n\n", "。", ". ", " ", ""],
 
-                 embedding_model_instance=embedding_model_instance,
 
-             )
 
-         return character_splitter
 
-     def _step_split(
 
-         self,
 
-         text_docs: list[Document],
 
-         splitter: TextSplitter,
 
-         dataset: Dataset,
 
-         dataset_document: DatasetDocument,
 
-         processing_rule: DatasetProcessRule,
 
-     ) -> list[Document]:
 
-         """
 
-         Split the text documents into documents and save them to the document segment.
 
-         """
 
-         documents = self._split_to_documents(
 
-             text_docs=text_docs,
 
-             splitter=splitter,
 
-             processing_rule=processing_rule,
 
-             tenant_id=dataset.tenant_id,
 
-             document_form=dataset_document.doc_form,
 
-             document_language=dataset_document.doc_language,
 
-         )
 
-         # save node to document segment
 
-         doc_store = DatasetDocumentStore(
 
-             dataset=dataset, user_id=dataset_document.created_by, document_id=dataset_document.id
 
-         )
 
-         # add document segments
 
-         doc_store.add_documents(documents)
 
-         # update document status to indexing
 
-         cur_time = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
 
-         self._update_document_index_status(
 
-             document_id=dataset_document.id,
 
-             after_indexing_status="indexing",
 
-             extra_update_params={
 
-                 DatasetDocument.cleaning_completed_at: cur_time,
 
-                 DatasetDocument.splitting_completed_at: cur_time,
 
-             },
 
-         )
 
-         # update segment status to indexing
 
-         self._update_segments_by_document(
 
-             dataset_document_id=dataset_document.id,
 
-             update_params={
 
-                 DocumentSegment.status: "indexing",
 
-                 DocumentSegment.indexing_at: datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
 
-             },
 
-         )
 
-         return documents
 
-     def _split_to_documents(
 
-         self,
 
-         text_docs: list[Document],
 
-         splitter: TextSplitter,
 
-         processing_rule: DatasetProcessRule,
 
-         tenant_id: str,
 
-         document_form: str,
 
-         document_language: str,
 
-     ) -> list[Document]:
 
-         """
 
-         Split the text documents into nodes.
 
-         """
 
-         all_documents = []
 
-         all_qa_documents = []
 
-         for text_doc in text_docs:
 
-             # document clean
 
-             document_text = self._document_clean(text_doc.page_content, processing_rule)
 
-             text_doc.page_content = document_text
 
-             # parse document to nodes
 
-             documents = splitter.split_documents([text_doc])
 
-             split_documents = []
 
-             for document_node in documents:
 
-                 if document_node.page_content.strip():
 
-                     doc_id = str(uuid.uuid4())
 
-                     hash = helper.generate_text_hash(document_node.page_content)
 
-                     document_node.metadata["doc_id"] = doc_id
 
-                     document_node.metadata["doc_hash"] = hash
 
-                     # delete Splitter character
 
-                     page_content = document_node.page_content
 
-                     document_node.page_content = remove_leading_symbols(page_content)
 
-                     if document_node.page_content:
 
-                         split_documents.append(document_node)
 
-             all_documents.extend(split_documents)
 
-         # processing qa document
 
-         if document_form == "qa_model":
 
-             for i in range(0, len(all_documents), 10):
 
-                 threads = []
 
-                 sub_documents = all_documents[i : i + 10]
 
-                 for doc in sub_documents:
 
-                     document_format_thread = threading.Thread(
 
-                         target=self.format_qa_document,
 
-                         kwargs={
 
-                             "flask_app": current_app._get_current_object(),
 
-                             "tenant_id": tenant_id,
 
-                             "document_node": doc,
 
-                             "all_qa_documents": all_qa_documents,
 
-                             "document_language": document_language,
 
-                         },
 
-                     )
 
-                     threads.append(document_format_thread)
 
-                     document_format_thread.start()
 
-                 for thread in threads:
 
-                     thread.join()
 
-             return all_qa_documents
 
-         return all_documents
 
-     def format_qa_document(self, flask_app: Flask, tenant_id: str, document_node, all_qa_documents, document_language):
 
-         format_documents = []
 
-         if document_node.page_content is None or not document_node.page_content.strip():
 
-             return
 
-         with flask_app.app_context():
 
-             try:
 
-                 # qa model document
 
-                 response = LLMGenerator.generate_qa_document(tenant_id, document_node.page_content, document_language)
 
-                 document_qa_list = self.format_split_text(response)
 
-                 qa_documents = []
 
-                 for result in document_qa_list:
 
-                     qa_document = Document(
 
-                         page_content=result["question"], metadata=document_node.metadata.model_copy()
 
-                     )
 
-                     doc_id = str(uuid.uuid4())
 
-                     hash = helper.generate_text_hash(result["question"])
 
-                     qa_document.metadata["answer"] = result["answer"]
 
-                     qa_document.metadata["doc_id"] = doc_id
 
-                     qa_document.metadata["doc_hash"] = hash
 
-                     qa_documents.append(qa_document)
 
-                 format_documents.extend(qa_documents)
 
-             except Exception as e:
 
-                 logging.exception("Failed to format qa document")
 
-             all_qa_documents.extend(format_documents)
 
-     def _split_to_documents_for_estimate(
 
-         self, text_docs: list[Document], splitter: TextSplitter, processing_rule: DatasetProcessRule
 
-     ) -> list[Document]:
 
-         """
 
-         Split the text documents into nodes.
 
-         """
 
-         all_documents = []
 
-         for text_doc in text_docs:
 
-             # document clean
 
-             document_text = self._document_clean(text_doc.page_content, processing_rule)
 
-             text_doc.page_content = document_text
 
-             # parse document to nodes
 
-             documents = splitter.split_documents([text_doc])
 
-             split_documents = []
 
-             for document in documents:
 
-                 if document.page_content is None or not document.page_content.strip():
 
-                     continue
 
-                 doc_id = str(uuid.uuid4())
 
-                 hash = helper.generate_text_hash(document.page_content)
 
-                 document.metadata["doc_id"] = doc_id
 
-                 document.metadata["doc_hash"] = hash
 
-                 split_documents.append(document)
 
-             all_documents.extend(split_documents)
 
-         return all_documents
 
-     @staticmethod
 
-     def _document_clean(text: str, processing_rule: DatasetProcessRule) -> str:
 
-         """
 
-         Clean the document text according to the processing rules.
 
-         """
 
-         if processing_rule.mode == "automatic":
 
-             rules = DatasetProcessRule.AUTOMATIC_RULES
 
-         else:
 
-             rules = json.loads(processing_rule.rules) if processing_rule.rules else {}
 
-         document_text = CleanProcessor.clean(text, {"rules": rules})
 
-         return document_text
 
-     @staticmethod
 
-     def format_split_text(text):
 
-         regex = r"Q\d+:\s*(.*?)\s*A\d+:\s*([\s\S]*?)(?=Q\d+:|$)"
 
-         matches = re.findall(regex, text, re.UNICODE)
 
-         return [{"question": q, "answer": re.sub(r"\n\s*", "\n", a.strip())} for q, a in matches if q and a]
 
-     def _load(
 
-         self,
 
-         index_processor: BaseIndexProcessor,
 
-         dataset: Dataset,
 
-         dataset_document: DatasetDocument,
 
-         documents: list[Document],
 
-     ) -> None:
 
-         """
 
-         insert index and update document/segment status to completed
 
-         """
 
-         embedding_model_instance = None
 
-         if dataset.indexing_technique == "high_quality":
 
-             embedding_model_instance = self.model_manager.get_model_instance(
 
-                 tenant_id=dataset.tenant_id,
 
-                 provider=dataset.embedding_model_provider,
 
-                 model_type=ModelType.TEXT_EMBEDDING,
 
-                 model=dataset.embedding_model,
 
-             )
 
-         # chunk nodes by chunk size
 
-         indexing_start_at = time.perf_counter()
 
-         tokens = 0
 
-         chunk_size = 10
 
-         # create keyword index
 
-         create_keyword_thread = threading.Thread(
 
-             target=self._process_keyword_index,
 
-             args=(current_app._get_current_object(), dataset.id, dataset_document.id, documents),
 
-         )
 
-         create_keyword_thread.start()
 
-         if dataset.indexing_technique == "high_quality":
 
-             with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:
 
-                 futures = []
 
-                 for i in range(0, len(documents), chunk_size):
 
-                     chunk_documents = documents[i : i + chunk_size]
 
-                     futures.append(
 
-                         executor.submit(
 
-                             self._process_chunk,
 
-                             current_app._get_current_object(),
 
-                             index_processor,
 
-                             chunk_documents,
 
-                             dataset,
 
-                             dataset_document,
 
-                             embedding_model_instance,
 
-                         )
 
-                     )
 
-                 for future in futures:
 
-                     tokens += future.result()
 
-         create_keyword_thread.join()
 
-         indexing_end_at = time.perf_counter()
 
-         # update document status to completed
 
-         self._update_document_index_status(
 
-             document_id=dataset_document.id,
 
-             after_indexing_status="completed",
 
-             extra_update_params={
 
-                 DatasetDocument.tokens: tokens,
 
-                 DatasetDocument.completed_at: datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
 
-                 DatasetDocument.indexing_latency: indexing_end_at - indexing_start_at,
 
-                 DatasetDocument.error: None,
 
-             },
 
-         )
 
-     @staticmethod
 
-     def _process_keyword_index(flask_app, dataset_id, document_id, documents):
 
-         with flask_app.app_context():
 
-             dataset = Dataset.query.filter_by(id=dataset_id).first()
 
-             if not dataset:
 
-                 raise ValueError("no dataset found")
 
-             keyword = Keyword(dataset)
 
-             keyword.create(documents)
 
-             if dataset.indexing_technique != "high_quality":
 
-                 document_ids = [document.metadata["doc_id"] for document in documents]
 
-                 db.session.query(DocumentSegment).filter(
 
-                     DocumentSegment.document_id == document_id,
 
-                     DocumentSegment.dataset_id == dataset_id,
 
-                     DocumentSegment.index_node_id.in_(document_ids),
 
-                     DocumentSegment.status == "indexing",
 
-                 ).update(
 
-                     {
 
-                         DocumentSegment.status: "completed",
 
-                         DocumentSegment.enabled: True,
 
-                         DocumentSegment.completed_at: datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
 
-                     }
 
-                 )
 
-                 db.session.commit()
 
-     def _process_chunk(
 
-         self, flask_app, index_processor, chunk_documents, dataset, dataset_document, embedding_model_instance
 
-     ):
 
-         with flask_app.app_context():
 
-             # check document is paused
 
-             self._check_document_paused_status(dataset_document.id)
 
-             tokens = 0
 
-             if embedding_model_instance:
 
-                 tokens += sum(
 
-                     embedding_model_instance.get_text_embedding_num_tokens([document.page_content])
 
-                     for document in chunk_documents
 
-                 )
 
-             # load index
 
-             index_processor.load(dataset, chunk_documents, with_keywords=False)
 
-             document_ids = [document.metadata["doc_id"] for document in chunk_documents]
 
-             db.session.query(DocumentSegment).filter(
 
-                 DocumentSegment.document_id == dataset_document.id,
 
-                 DocumentSegment.dataset_id == dataset.id,
 
-                 DocumentSegment.index_node_id.in_(document_ids),
 
-                 DocumentSegment.status == "indexing",
 
-             ).update(
 
-                 {
 
-                     DocumentSegment.status: "completed",
 
-                     DocumentSegment.enabled: True,
 
-                     DocumentSegment.completed_at: datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
 
-                 }
 
-             )
 
-             db.session.commit()
 
-             return tokens
 
-     @staticmethod
 
-     def _check_document_paused_status(document_id: str):
 
-         indexing_cache_key = "document_{}_is_paused".format(document_id)
 
-         result = redis_client.get(indexing_cache_key)
 
-         if result:
 
-             raise DocumentIsPausedError()
 
-     @staticmethod
 
-     def _update_document_index_status(
 
-         document_id: str, after_indexing_status: str, extra_update_params: Optional[dict] = None
 
-     ) -> None:
 
-         """
 
-         Update the document indexing status.
 
-         """
 
-         count = DatasetDocument.query.filter_by(id=document_id, is_paused=True).count()
 
-         if count > 0:
 
-             raise DocumentIsPausedError()
 
-         document = DatasetDocument.query.filter_by(id=document_id).first()
 
-         if not document:
 
-             raise DocumentIsDeletedPausedError()
 
-         update_params = {DatasetDocument.indexing_status: after_indexing_status}
 
-         if extra_update_params:
 
-             update_params.update(extra_update_params)
 
-         DatasetDocument.query.filter_by(id=document_id).update(update_params)
 
-         db.session.commit()
 
-     @staticmethod
 
-     def _update_segments_by_document(dataset_document_id: str, update_params: dict) -> None:
 
-         """
 
-         Update the document segment by document id.
 
-         """
 
-         DocumentSegment.query.filter_by(document_id=dataset_document_id).update(update_params)
 
-         db.session.commit()
 
-     @staticmethod
 
-     def batch_add_segments(segments: list[DocumentSegment], dataset: Dataset):
 
-         """
 
-         Batch add segments index processing
 
-         """
 
-         documents = []
 
-         for segment in segments:
 
-             document = Document(
 
-                 page_content=segment.content,
 
-                 metadata={
 
-                     "doc_id": segment.index_node_id,
 
-                     "doc_hash": segment.index_node_hash,
 
-                     "document_id": segment.document_id,
 
-                     "dataset_id": segment.dataset_id,
 
-                 },
 
-             )
 
-             documents.append(document)
 
-         # save vector index
 
-         index_type = dataset.doc_form
 
-         index_processor = IndexProcessorFactory(index_type).init_index_processor()
 
-         index_processor.load(dataset, documents)
 
-     def _transform(
 
-         self,
 
-         index_processor: BaseIndexProcessor,
 
-         dataset: Dataset,
 
-         text_docs: list[Document],
 
-         doc_language: str,
 
-         process_rule: dict,
 
-     ) -> list[Document]:
 
-         # get embedding model instance
 
-         embedding_model_instance = None
 
-         if dataset.indexing_technique == "high_quality":
 
-             if dataset.embedding_model_provider:
 
-                 embedding_model_instance = self.model_manager.get_model_instance(
 
-                     tenant_id=dataset.tenant_id,
 
-                     provider=dataset.embedding_model_provider,
 
-                     model_type=ModelType.TEXT_EMBEDDING,
 
-                     model=dataset.embedding_model,
 
-                 )
 
-             else:
 
-                 embedding_model_instance = self.model_manager.get_default_model_instance(
 
-                     tenant_id=dataset.tenant_id,
 
-                     model_type=ModelType.TEXT_EMBEDDING,
 
-                 )
 
-         documents = index_processor.transform(
 
-             text_docs,
 
-             embedding_model_instance=embedding_model_instance,
 
-             process_rule=process_rule,
 
-             tenant_id=dataset.tenant_id,
 
-             doc_language=doc_language,
 
-         )
 
-         return documents
 
-     def _load_segments(self, dataset, dataset_document, documents):
 
-         # save node to document segment
 
-         doc_store = DatasetDocumentStore(
 
-             dataset=dataset, user_id=dataset_document.created_by, document_id=dataset_document.id
 
-         )
 
-         # add document segments
 
-         doc_store.add_documents(documents)
 
-         # update document status to indexing
 
-         cur_time = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
 
-         self._update_document_index_status(
 
-             document_id=dataset_document.id,
 
-             after_indexing_status="indexing",
 
-             extra_update_params={
 
-                 DatasetDocument.cleaning_completed_at: cur_time,
 
-                 DatasetDocument.splitting_completed_at: cur_time,
 
-             },
 
-         )
 
-         # update segment status to indexing
 
-         self._update_segments_by_document(
 
-             dataset_document_id=dataset_document.id,
 
-             update_params={
 
-                 DocumentSegment.status: "indexing",
 
-                 DocumentSegment.indexing_at: datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
 
-             },
 
-         )
 
-         pass
 
- class DocumentIsPausedError(Exception):
 
-     pass
 
- class DocumentIsDeletedPausedError(Exception):
 
-     pass
 
 
  |