dataset_retrieval.py 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682
  1. import math
  2. import threading
  3. from collections import Counter
  4. from typing import Optional, cast
  5. from flask import Flask, current_app
  6. from core.app.app_config.entities import DatasetEntity, DatasetRetrieveConfigEntity
  7. from core.app.entities.app_invoke_entities import InvokeFrom, ModelConfigWithCredentialsEntity
  8. from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
  9. from core.entities.agent_entities import PlanningStrategy
  10. from core.memory.token_buffer_memory import TokenBufferMemory
  11. from core.model_manager import ModelInstance, ModelManager
  12. from core.model_runtime.entities.message_entities import PromptMessageTool
  13. from core.model_runtime.entities.model_entities import ModelFeature, ModelType
  14. from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
  15. from core.ops.entities.trace_entity import TraceTaskName
  16. from core.ops.ops_trace_manager import TraceQueueManager, TraceTask
  17. from core.ops.utils import measure_time
  18. from core.rag.data_post_processor.data_post_processor import DataPostProcessor
  19. from core.rag.datasource.keyword.jieba.jieba_keyword_table_handler import JiebaKeywordTableHandler
  20. from core.rag.datasource.retrieval_service import RetrievalService
  21. from core.rag.entities.context_entities import DocumentContext
  22. from core.rag.models.document import Document
  23. from core.rag.retrieval.retrieval_methods import RetrievalMethod
  24. from core.rag.retrieval.router.multi_dataset_function_call_router import FunctionCallMultiDatasetRouter
  25. from core.rag.retrieval.router.multi_dataset_react_route import ReactMultiDatasetRouter
  26. from core.tools.tool.dataset_retriever.dataset_multi_retriever_tool import DatasetMultiRetrieverTool
  27. from core.tools.tool.dataset_retriever.dataset_retriever_base_tool import DatasetRetrieverBaseTool
  28. from core.tools.tool.dataset_retriever.dataset_retriever_tool import DatasetRetrieverTool
  29. from extensions.ext_database import db
  30. from models.dataset import Dataset, DatasetQuery, DocumentSegment
  31. from models.dataset import Document as DatasetDocument
  32. from services.external_knowledge_service import ExternalDatasetService
  33. default_retrieval_model = {
  34. "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
  35. "reranking_enable": False,
  36. "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
  37. "top_k": 2,
  38. "score_threshold_enabled": False,
  39. }
  40. class DatasetRetrieval:
  41. def __init__(self, application_generate_entity=None):
  42. self.application_generate_entity = application_generate_entity
  43. def retrieve(
  44. self,
  45. app_id: str,
  46. user_id: str,
  47. tenant_id: str,
  48. model_config: ModelConfigWithCredentialsEntity,
  49. config: DatasetEntity,
  50. query: str,
  51. invoke_from: InvokeFrom,
  52. show_retrieve_source: bool,
  53. hit_callback: DatasetIndexToolCallbackHandler,
  54. message_id: str,
  55. memory: Optional[TokenBufferMemory] = None,
  56. ) -> Optional[str]:
  57. """
  58. Retrieve dataset.
  59. :param app_id: app_id
  60. :param user_id: user_id
  61. :param tenant_id: tenant id
  62. :param model_config: model config
  63. :param config: dataset config
  64. :param query: query
  65. :param invoke_from: invoke from
  66. :param show_retrieve_source: show retrieve source
  67. :param hit_callback: hit callback
  68. :param message_id: message id
  69. :param memory: memory
  70. :return:
  71. """
  72. dataset_ids = config.dataset_ids
  73. if len(dataset_ids) == 0:
  74. return None
  75. retrieve_config = config.retrieve_config
  76. # check model is support tool calling
  77. model_type_instance = model_config.provider_model_bundle.model_type_instance
  78. model_type_instance = cast(LargeLanguageModel, model_type_instance)
  79. model_manager = ModelManager()
  80. model_instance = model_manager.get_model_instance(
  81. tenant_id=tenant_id, model_type=ModelType.LLM, provider=model_config.provider, model=model_config.model
  82. )
  83. # get model schema
  84. model_schema = model_type_instance.get_model_schema(
  85. model=model_config.model, credentials=model_config.credentials
  86. )
  87. if not model_schema:
  88. return None
  89. planning_strategy = PlanningStrategy.REACT_ROUTER
  90. features = model_schema.features
  91. if features:
  92. if ModelFeature.TOOL_CALL in features or ModelFeature.MULTI_TOOL_CALL in features:
  93. planning_strategy = PlanningStrategy.ROUTER
  94. available_datasets = []
  95. for dataset_id in dataset_ids:
  96. # get dataset from dataset id
  97. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  98. # pass if dataset is not available
  99. if not dataset:
  100. continue
  101. # pass if dataset is not available
  102. if dataset and dataset.available_document_count == 0 and dataset.provider != "external":
  103. continue
  104. available_datasets.append(dataset)
  105. all_documents = []
  106. user_from = "account" if invoke_from in {InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER} else "end_user"
  107. if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE:
  108. all_documents = self.single_retrieve(
  109. app_id,
  110. tenant_id,
  111. user_id,
  112. user_from,
  113. available_datasets,
  114. query,
  115. model_instance,
  116. model_config,
  117. planning_strategy,
  118. message_id,
  119. )
  120. elif retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE:
  121. all_documents = self.multiple_retrieve(
  122. app_id,
  123. tenant_id,
  124. user_id,
  125. user_from,
  126. available_datasets,
  127. query,
  128. retrieve_config.top_k,
  129. retrieve_config.score_threshold,
  130. retrieve_config.rerank_mode,
  131. retrieve_config.reranking_model,
  132. retrieve_config.weights,
  133. retrieve_config.reranking_enabled,
  134. message_id,
  135. )
  136. dify_documents = [item for item in all_documents if item.provider == "dify"]
  137. external_documents = [item for item in all_documents if item.provider == "external"]
  138. document_context_list = []
  139. retrieval_resource_list = []
  140. # deal with external documents
  141. for item in external_documents:
  142. document_context_list.append(DocumentContext(content=item.page_content, score=item.metadata.get("score")))
  143. source = {
  144. "dataset_id": item.metadata.get("dataset_id"),
  145. "dataset_name": item.metadata.get("dataset_name"),
  146. "document_name": item.metadata.get("title"),
  147. "data_source_type": "external",
  148. "retriever_from": invoke_from.to_source(),
  149. "score": item.metadata.get("score"),
  150. "content": item.page_content,
  151. }
  152. retrieval_resource_list.append(source)
  153. document_score_list = {}
  154. # deal with dify documents
  155. if dify_documents:
  156. for item in dify_documents:
  157. if item.metadata.get("score"):
  158. document_score_list[item.metadata["doc_id"]] = item.metadata["score"]
  159. index_node_ids = [document.metadata["doc_id"] for document in dify_documents]
  160. segments = DocumentSegment.query.filter(
  161. DocumentSegment.dataset_id.in_(dataset_ids),
  162. DocumentSegment.status == "completed",
  163. DocumentSegment.enabled == True,
  164. DocumentSegment.index_node_id.in_(index_node_ids),
  165. ).all()
  166. if segments:
  167. index_node_id_to_position = {id: position for position, id in enumerate(index_node_ids)}
  168. sorted_segments = sorted(
  169. segments, key=lambda segment: index_node_id_to_position.get(segment.index_node_id, float("inf"))
  170. )
  171. for segment in sorted_segments:
  172. if segment.answer:
  173. document_context_list.append(
  174. DocumentContext(
  175. content=f"question:{segment.get_sign_content()} answer:{segment.answer}",
  176. score=document_score_list.get(segment.index_node_id, None),
  177. )
  178. )
  179. else:
  180. document_context_list.append(
  181. DocumentContext(
  182. content=segment.get_sign_content(),
  183. score=document_score_list.get(segment.index_node_id, None),
  184. )
  185. )
  186. if show_retrieve_source:
  187. for segment in sorted_segments:
  188. dataset = Dataset.query.filter_by(id=segment.dataset_id).first()
  189. document = DatasetDocument.query.filter(
  190. DatasetDocument.id == segment.document_id,
  191. DatasetDocument.enabled == True,
  192. DatasetDocument.archived == False,
  193. ).first()
  194. if dataset and document:
  195. source = {
  196. "dataset_id": dataset.id,
  197. "dataset_name": dataset.name,
  198. "document_id": document.id,
  199. "document_name": document.name,
  200. "data_source_type": document.data_source_type,
  201. "segment_id": segment.id,
  202. "retriever_from": invoke_from.to_source(),
  203. "score": document_score_list.get(segment.index_node_id, None),
  204. }
  205. if invoke_from.to_source() == "dev":
  206. source["hit_count"] = segment.hit_count
  207. source["word_count"] = segment.word_count
  208. source["segment_position"] = segment.position
  209. source["index_node_hash"] = segment.index_node_hash
  210. if segment.answer:
  211. source["content"] = f"question:{segment.content} \nanswer:{segment.answer}"
  212. else:
  213. source["content"] = segment.content
  214. retrieval_resource_list.append(source)
  215. if hit_callback and retrieval_resource_list:
  216. hit_callback.return_retriever_resource_info(retrieval_resource_list)
  217. if document_context_list:
  218. document_context_list = sorted(document_context_list, key=lambda x: x.score, reverse=True)
  219. return str("\n".join([document_context.content for document_context in document_context_list]))
  220. return ""
  221. def single_retrieve(
  222. self,
  223. app_id: str,
  224. tenant_id: str,
  225. user_id: str,
  226. user_from: str,
  227. available_datasets: list,
  228. query: str,
  229. model_instance: ModelInstance,
  230. model_config: ModelConfigWithCredentialsEntity,
  231. planning_strategy: PlanningStrategy,
  232. message_id: Optional[str] = None,
  233. ):
  234. tools = []
  235. for dataset in available_datasets:
  236. description = dataset.description
  237. if not description:
  238. description = "useful for when you want to answer queries about the " + dataset.name
  239. description = description.replace("\n", "").replace("\r", "")
  240. message_tool = PromptMessageTool(
  241. name=dataset.id,
  242. description=description,
  243. parameters={
  244. "type": "object",
  245. "properties": {},
  246. "required": [],
  247. },
  248. )
  249. tools.append(message_tool)
  250. dataset_id = None
  251. if planning_strategy == PlanningStrategy.REACT_ROUTER:
  252. react_multi_dataset_router = ReactMultiDatasetRouter()
  253. dataset_id = react_multi_dataset_router.invoke(
  254. query, tools, model_config, model_instance, user_id, tenant_id
  255. )
  256. elif planning_strategy == PlanningStrategy.ROUTER:
  257. function_call_router = FunctionCallMultiDatasetRouter()
  258. dataset_id = function_call_router.invoke(query, tools, model_config, model_instance)
  259. if dataset_id:
  260. # get retrieval model config
  261. dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
  262. if dataset:
  263. results = []
  264. if dataset.provider == "external":
  265. external_documents = ExternalDatasetService.fetch_external_knowledge_retrieval(
  266. tenant_id=dataset.tenant_id,
  267. dataset_id=dataset_id,
  268. query=query,
  269. external_retrieval_parameters=dataset.retrieval_model,
  270. )
  271. for external_document in external_documents:
  272. document = Document(
  273. page_content=external_document.get("content"),
  274. metadata=external_document.get("metadata"),
  275. provider="external",
  276. )
  277. document.metadata["score"] = external_document.get("score")
  278. document.metadata["title"] = external_document.get("title")
  279. document.metadata["dataset_id"] = dataset_id
  280. document.metadata["dataset_name"] = dataset.name
  281. results.append(document)
  282. else:
  283. retrieval_model_config = dataset.retrieval_model or default_retrieval_model
  284. # get top k
  285. top_k = retrieval_model_config["top_k"]
  286. # get retrieval method
  287. if dataset.indexing_technique == "economy":
  288. retrieval_method = "keyword_search"
  289. else:
  290. retrieval_method = retrieval_model_config["search_method"]
  291. # get reranking model
  292. reranking_model = (
  293. retrieval_model_config["reranking_model"]
  294. if retrieval_model_config["reranking_enable"]
  295. else None
  296. )
  297. # get score threshold
  298. score_threshold = 0.0
  299. score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
  300. if score_threshold_enabled:
  301. score_threshold = retrieval_model_config.get("score_threshold")
  302. with measure_time() as timer:
  303. results = RetrievalService.retrieve(
  304. retrieval_method=retrieval_method,
  305. dataset_id=dataset.id,
  306. query=query,
  307. top_k=top_k,
  308. score_threshold=score_threshold,
  309. reranking_model=reranking_model,
  310. reranking_mode=retrieval_model_config.get("reranking_mode", "reranking_model"),
  311. weights=retrieval_model_config.get("weights", None),
  312. )
  313. self._on_query(query, [dataset_id], app_id, user_from, user_id)
  314. if results:
  315. self._on_retrieval_end(results, message_id, timer)
  316. return results
  317. return []
  318. def multiple_retrieve(
  319. self,
  320. app_id: str,
  321. tenant_id: str,
  322. user_id: str,
  323. user_from: str,
  324. available_datasets: list,
  325. query: str,
  326. top_k: int,
  327. score_threshold: float,
  328. reranking_mode: str,
  329. reranking_model: Optional[dict] = None,
  330. weights: Optional[dict] = None,
  331. reranking_enable: bool = True,
  332. message_id: Optional[str] = None,
  333. ):
  334. threads = []
  335. all_documents = []
  336. dataset_ids = [dataset.id for dataset in available_datasets]
  337. index_type = None
  338. for dataset in available_datasets:
  339. index_type = dataset.indexing_technique
  340. retrieval_thread = threading.Thread(
  341. target=self._retriever,
  342. kwargs={
  343. "flask_app": current_app._get_current_object(),
  344. "dataset_id": dataset.id,
  345. "query": query,
  346. "top_k": top_k,
  347. "all_documents": all_documents,
  348. },
  349. )
  350. threads.append(retrieval_thread)
  351. retrieval_thread.start()
  352. for thread in threads:
  353. thread.join()
  354. with measure_time() as timer:
  355. if reranking_enable:
  356. # do rerank for searched documents
  357. data_post_processor = DataPostProcessor(tenant_id, reranking_mode, reranking_model, weights, False)
  358. all_documents = data_post_processor.invoke(
  359. query=query, documents=all_documents, score_threshold=score_threshold, top_n=top_k
  360. )
  361. else:
  362. if index_type == "economy":
  363. all_documents = self.calculate_keyword_score(query, all_documents, top_k)
  364. elif index_type == "high_quality":
  365. all_documents = self.calculate_vector_score(all_documents, top_k, score_threshold)
  366. self._on_query(query, dataset_ids, app_id, user_from, user_id)
  367. if all_documents:
  368. self._on_retrieval_end(all_documents, message_id, timer)
  369. return all_documents
  370. def _on_retrieval_end(
  371. self, documents: list[Document], message_id: Optional[str] = None, timer: Optional[dict] = None
  372. ) -> None:
  373. """Handle retrieval end."""
  374. dify_documents = [document for document in documents if document.provider == "dify"]
  375. for document in dify_documents:
  376. query = db.session.query(DocumentSegment).filter(
  377. DocumentSegment.index_node_id == document.metadata["doc_id"]
  378. )
  379. # if 'dataset_id' in document.metadata:
  380. if "dataset_id" in document.metadata:
  381. query = query.filter(DocumentSegment.dataset_id == document.metadata["dataset_id"])
  382. # add hit count to document segment
  383. query.update({DocumentSegment.hit_count: DocumentSegment.hit_count + 1}, synchronize_session=False)
  384. db.session.commit()
  385. # get tracing instance
  386. trace_manager: TraceQueueManager = (
  387. self.application_generate_entity.trace_manager if self.application_generate_entity else None
  388. )
  389. if trace_manager:
  390. trace_manager.add_trace_task(
  391. TraceTask(
  392. TraceTaskName.DATASET_RETRIEVAL_TRACE, message_id=message_id, documents=documents, timer=timer
  393. )
  394. )
  395. def _on_query(self, query: str, dataset_ids: list[str], app_id: str, user_from: str, user_id: str) -> None:
  396. """
  397. Handle query.
  398. """
  399. if not query:
  400. return
  401. dataset_queries = []
  402. for dataset_id in dataset_ids:
  403. dataset_query = DatasetQuery(
  404. dataset_id=dataset_id,
  405. content=query,
  406. source="app",
  407. source_app_id=app_id,
  408. created_by_role=user_from,
  409. created_by=user_id,
  410. )
  411. dataset_queries.append(dataset_query)
  412. if dataset_queries:
  413. db.session.add_all(dataset_queries)
  414. db.session.commit()
  415. def _retriever(self, flask_app: Flask, dataset_id: str, query: str, top_k: int, all_documents: list):
  416. with flask_app.app_context():
  417. dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
  418. if not dataset:
  419. return []
  420. if dataset.provider == "external":
  421. external_documents = ExternalDatasetService.fetch_external_knowledge_retrieval(
  422. tenant_id=dataset.tenant_id,
  423. dataset_id=dataset_id,
  424. query=query,
  425. external_retrieval_parameters=dataset.retrieval_model,
  426. )
  427. for external_document in external_documents:
  428. document = Document(
  429. page_content=external_document.get("content"),
  430. metadata=external_document.get("metadata"),
  431. provider="external",
  432. )
  433. document.metadata["score"] = external_document.get("score")
  434. document.metadata["title"] = external_document.get("title")
  435. document.metadata["dataset_id"] = dataset_id
  436. document.metadata["dataset_name"] = dataset.name
  437. all_documents.append(document)
  438. else:
  439. # get retrieval model , if the model is not setting , using default
  440. retrieval_model = dataset.retrieval_model or default_retrieval_model
  441. if dataset.indexing_technique == "economy":
  442. # use keyword table query
  443. documents = RetrievalService.retrieve(
  444. retrieval_method="keyword_search", dataset_id=dataset.id, query=query, top_k=top_k
  445. )
  446. if documents:
  447. all_documents.extend(documents)
  448. else:
  449. if top_k > 0:
  450. # retrieval source
  451. documents = RetrievalService.retrieve(
  452. retrieval_method=retrieval_model["search_method"],
  453. dataset_id=dataset.id,
  454. query=query,
  455. top_k=retrieval_model.get("top_k") or 2,
  456. score_threshold=retrieval_model.get("score_threshold", 0.0)
  457. if retrieval_model["score_threshold_enabled"]
  458. else 0.0,
  459. reranking_model=retrieval_model.get("reranking_model", None)
  460. if retrieval_model["reranking_enable"]
  461. else None,
  462. reranking_mode=retrieval_model.get("reranking_mode") or "reranking_model",
  463. weights=retrieval_model.get("weights", None),
  464. )
  465. all_documents.extend(documents)
  466. def to_dataset_retriever_tool(
  467. self,
  468. tenant_id: str,
  469. dataset_ids: list[str],
  470. retrieve_config: DatasetRetrieveConfigEntity,
  471. return_resource: bool,
  472. invoke_from: InvokeFrom,
  473. hit_callback: DatasetIndexToolCallbackHandler,
  474. ) -> Optional[list[DatasetRetrieverBaseTool]]:
  475. """
  476. A dataset tool is a tool that can be used to retrieve information from a dataset
  477. :param tenant_id: tenant id
  478. :param dataset_ids: dataset ids
  479. :param retrieve_config: retrieve config
  480. :param return_resource: return resource
  481. :param invoke_from: invoke from
  482. :param hit_callback: hit callback
  483. """
  484. tools = []
  485. available_datasets = []
  486. for dataset_id in dataset_ids:
  487. # get dataset from dataset id
  488. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  489. # pass if dataset is not available
  490. if not dataset:
  491. continue
  492. # pass if dataset is not available
  493. if dataset and dataset.available_document_count == 0:
  494. continue
  495. available_datasets.append(dataset)
  496. if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE:
  497. # get retrieval model config
  498. default_retrieval_model = {
  499. "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
  500. "reranking_enable": False,
  501. "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
  502. "top_k": 2,
  503. "score_threshold_enabled": False,
  504. }
  505. for dataset in available_datasets:
  506. retrieval_model_config = dataset.retrieval_model or default_retrieval_model
  507. # get top k
  508. top_k = retrieval_model_config["top_k"]
  509. # get score threshold
  510. score_threshold = None
  511. score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
  512. if score_threshold_enabled:
  513. score_threshold = retrieval_model_config.get("score_threshold")
  514. tool = DatasetRetrieverTool.from_dataset(
  515. dataset=dataset,
  516. top_k=top_k,
  517. score_threshold=score_threshold,
  518. hit_callbacks=[hit_callback],
  519. return_resource=return_resource,
  520. retriever_from=invoke_from.to_source(),
  521. )
  522. tools.append(tool)
  523. elif retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE:
  524. tool = DatasetMultiRetrieverTool.from_dataset(
  525. dataset_ids=[dataset.id for dataset in available_datasets],
  526. tenant_id=tenant_id,
  527. top_k=retrieve_config.top_k or 2,
  528. score_threshold=retrieve_config.score_threshold,
  529. hit_callbacks=[hit_callback],
  530. return_resource=return_resource,
  531. retriever_from=invoke_from.to_source(),
  532. reranking_provider_name=retrieve_config.reranking_model.get("reranking_provider_name"),
  533. reranking_model_name=retrieve_config.reranking_model.get("reranking_model_name"),
  534. )
  535. tools.append(tool)
  536. return tools
  537. def calculate_keyword_score(self, query: str, documents: list[Document], top_k: int) -> list[Document]:
  538. """
  539. Calculate keywords scores
  540. :param query: search query
  541. :param documents: documents for reranking
  542. :return:
  543. """
  544. keyword_table_handler = JiebaKeywordTableHandler()
  545. query_keywords = keyword_table_handler.extract_keywords(query, None)
  546. documents_keywords = []
  547. for document in documents:
  548. # get the document keywords
  549. document_keywords = keyword_table_handler.extract_keywords(document.page_content, None)
  550. document.metadata["keywords"] = document_keywords
  551. documents_keywords.append(document_keywords)
  552. # Counter query keywords(TF)
  553. query_keyword_counts = Counter(query_keywords)
  554. # total documents
  555. total_documents = len(documents)
  556. # calculate all documents' keywords IDF
  557. all_keywords = set()
  558. for document_keywords in documents_keywords:
  559. all_keywords.update(document_keywords)
  560. keyword_idf = {}
  561. for keyword in all_keywords:
  562. # calculate include query keywords' documents
  563. doc_count_containing_keyword = sum(1 for doc_keywords in documents_keywords if keyword in doc_keywords)
  564. # IDF
  565. keyword_idf[keyword] = math.log((1 + total_documents) / (1 + doc_count_containing_keyword)) + 1
  566. query_tfidf = {}
  567. for keyword, count in query_keyword_counts.items():
  568. tf = count
  569. idf = keyword_idf.get(keyword, 0)
  570. query_tfidf[keyword] = tf * idf
  571. # calculate all documents' TF-IDF
  572. documents_tfidf = []
  573. for document_keywords in documents_keywords:
  574. document_keyword_counts = Counter(document_keywords)
  575. document_tfidf = {}
  576. for keyword, count in document_keyword_counts.items():
  577. tf = count
  578. idf = keyword_idf.get(keyword, 0)
  579. document_tfidf[keyword] = tf * idf
  580. documents_tfidf.append(document_tfidf)
  581. def cosine_similarity(vec1, vec2):
  582. intersection = set(vec1.keys()) & set(vec2.keys())
  583. numerator = sum(vec1[x] * vec2[x] for x in intersection)
  584. sum1 = sum(vec1[x] ** 2 for x in vec1)
  585. sum2 = sum(vec2[x] ** 2 for x in vec2)
  586. denominator = math.sqrt(sum1) * math.sqrt(sum2)
  587. if not denominator:
  588. return 0.0
  589. else:
  590. return float(numerator) / denominator
  591. similarities = []
  592. for document_tfidf in documents_tfidf:
  593. similarity = cosine_similarity(query_tfidf, document_tfidf)
  594. similarities.append(similarity)
  595. for document, score in zip(documents, similarities):
  596. # format document
  597. document.metadata["score"] = score
  598. documents = sorted(documents, key=lambda x: x.metadata["score"], reverse=True)
  599. return documents[:top_k] if top_k else documents
  600. def calculate_vector_score(
  601. self, all_documents: list[Document], top_k: int, score_threshold: float
  602. ) -> list[Document]:
  603. filter_documents = []
  604. for document in all_documents:
  605. if score_threshold is None or document.metadata["score"] >= score_threshold:
  606. filter_documents.append(document)
  607. if not filter_documents:
  608. return []
  609. filter_documents = sorted(filter_documents, key=lambda x: x.metadata["score"], reverse=True)
  610. return filter_documents[:top_k] if top_k else filter_documents