Giga Group c9ff0e3961 Add model hunyuan-embedding (#6657) vor 9 Monaten
..
configs 8dd68e2034 fix(api/core/moderation/output_moderation.py): Fix config call. (#6769) vor 9 Monaten
constants 5e6fc58db3 Feat/environment variables in workflow (#6515) vor 10 Monaten
contexts 5e6fc58db3 Feat/environment variables in workflow (#6515) vor 10 Monaten
controllers ecb9c311b5 chore: make prompt generator max tokens configurable (#6693) vor 10 Monaten
core c9ff0e3961 Add model hunyuan-embedding (#6657) vor 9 Monaten
docker 5236cb1888 fix: kill signal is not passed to the main process (#6159) vor 10 Monaten
events d320d1468d Feat/delete file when clean document (#5882) vor 10 Monaten
extensions 349ec0db77 fix tencent_cos_storage image-preview error is not a byte (#6652) vor 10 Monaten
fields 55c2b61921 fix(api/fields/workflow_fields.py): Add check in environment variables (#6621) vor 10 Monaten
libs 617847e3c0 fix(api/services/app_generate_service.py): Remove wrong type hints. (#6535) vor 10 Monaten
migrations e23461c837 Fix/6615 40 varchar limit on DatasetCollectionBinding and Embedding model name (#6723) vor 9 Monaten
models e23461c837 Fix/6615 40 varchar limit on DatasetCollectionBinding and Embedding model name (#6723) vor 9 Monaten
schedule 5e6fc58db3 Feat/environment variables in workflow (#6515) vor 10 Monaten
services 05141ede16 chore: optimize asynchronous deletion performance of app related data (#6634) vor 10 Monaten
tasks 0625db0bf5 chore: optimize asynchronous workflow deletion performance of app related data (#6639) vor 10 Monaten
templates 00b4cc3cd4 feat: implement forgot password feature (#5534) vor 10 Monaten
tests c9ff0e3961 Add model hunyuan-embedding (#6657) vor 9 Monaten
.dockerignore 27f0ae8416 build: support Poetry for depencencies tool in api's Dockerfile (#5105) vor 11 Monaten
.env.example ecb9c311b5 chore: make prompt generator max tokens configurable (#6693) vor 10 Monaten
Dockerfile 9b7c74a5d9 chore: skip pip upgrade preparation in api dockerfile (#5999) vor 10 Monaten
README.md fb5e3662d5 Chores: add missing profile for middleware docker compose cmd and fix ssrf-proxy doc link (#6372) vor 10 Monaten
app.py 5e6fc58db3 Feat/environment variables in workflow (#6515) vor 10 Monaten
commands.py 7c70eb87bc feat: support AnalyticDB vector store (#5586) vor 10 Monaten
poetry.lock cf258b7a67 add xlsx support hyperlink extract (#6722) vor 9 Monaten
poetry.toml f62f71a81a build: initial support for poetry build tool (#4513) vor 11 Monaten
pyproject.toml cf258b7a67 add xlsx support hyperlink extract (#6722) vor 9 Monaten

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   # change the profile to other vector database if you are not using weaviate
   docker compose -f docker-compose.middleware.yaml --profile weaviate -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.

```bash for Linux sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env


   ```bash for Mac
   secret_key=$(openssl rand -base64 42)
   sed -i '' "/^SECRET_KEY=/c\\
   SECRET_KEY=${secret_key}" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies
   poetry env use 3.10
   poetry install

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000...
  3. If you need to debug local async processing, please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   cd ../
   poetry run -C api bash dev/pytest/pytest_all_tests.sh