datasets.py 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573
  1. import flask_restful
  2. from flask import current_app, request
  3. from flask_login import current_user
  4. from flask_restful import Resource, marshal, marshal_with, reqparse
  5. from werkzeug.exceptions import Forbidden, NotFound
  6. import services
  7. from controllers.console import api
  8. from controllers.console.apikey import api_key_fields, api_key_list
  9. from controllers.console.app.error import ProviderNotInitializeError
  10. from controllers.console.datasets.error import DatasetInUseError, DatasetNameDuplicateError
  11. from controllers.console.setup import setup_required
  12. from controllers.console.wraps import account_initialization_required
  13. from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
  14. from core.indexing_runner import IndexingRunner
  15. from core.model_runtime.entities.model_entities import ModelType
  16. from core.provider_manager import ProviderManager
  17. from core.rag.datasource.vdb.vector_type import VectorType
  18. from core.rag.extractor.entity.extract_setting import ExtractSetting
  19. from core.rag.retrieval.retrival_methods import RetrievalMethod
  20. from extensions.ext_database import db
  21. from fields.app_fields import related_app_list
  22. from fields.dataset_fields import dataset_detail_fields, dataset_query_detail_fields
  23. from fields.document_fields import document_status_fields
  24. from libs.login import login_required
  25. from models.dataset import Dataset, Document, DocumentSegment
  26. from models.model import ApiToken, UploadFile
  27. from services.dataset_service import DatasetService, DocumentService
  28. def _validate_name(name):
  29. if not name or len(name) < 1 or len(name) > 40:
  30. raise ValueError('Name must be between 1 to 40 characters.')
  31. return name
  32. def _validate_description_length(description):
  33. if len(description) > 400:
  34. raise ValueError('Description cannot exceed 400 characters.')
  35. return description
  36. class DatasetListApi(Resource):
  37. @setup_required
  38. @login_required
  39. @account_initialization_required
  40. def get(self):
  41. page = request.args.get('page', default=1, type=int)
  42. limit = request.args.get('limit', default=20, type=int)
  43. ids = request.args.getlist('ids')
  44. provider = request.args.get('provider', default="vendor")
  45. search = request.args.get('keyword', default=None, type=str)
  46. tag_ids = request.args.getlist('tag_ids')
  47. if ids:
  48. datasets, total = DatasetService.get_datasets_by_ids(ids, current_user.current_tenant_id)
  49. else:
  50. datasets, total = DatasetService.get_datasets(page, limit, provider,
  51. current_user.current_tenant_id, current_user, search, tag_ids)
  52. # check embedding setting
  53. provider_manager = ProviderManager()
  54. configurations = provider_manager.get_configurations(
  55. tenant_id=current_user.current_tenant_id
  56. )
  57. embedding_models = configurations.get_models(
  58. model_type=ModelType.TEXT_EMBEDDING,
  59. only_active=True
  60. )
  61. model_names = []
  62. for embedding_model in embedding_models:
  63. model_names.append(f"{embedding_model.model}:{embedding_model.provider.provider}")
  64. data = marshal(datasets, dataset_detail_fields)
  65. for item in data:
  66. if item['indexing_technique'] == 'high_quality':
  67. item_model = f"{item['embedding_model']}:{item['embedding_model_provider']}"
  68. if item_model in model_names:
  69. item['embedding_available'] = True
  70. else:
  71. item['embedding_available'] = False
  72. else:
  73. item['embedding_available'] = True
  74. response = {
  75. 'data': data,
  76. 'has_more': len(datasets) == limit,
  77. 'limit': limit,
  78. 'total': total,
  79. 'page': page
  80. }
  81. return response, 200
  82. @setup_required
  83. @login_required
  84. @account_initialization_required
  85. def post(self):
  86. parser = reqparse.RequestParser()
  87. parser.add_argument('name', nullable=False, required=True,
  88. help='type is required. Name must be between 1 to 40 characters.',
  89. type=_validate_name)
  90. parser.add_argument('indexing_technique', type=str, location='json',
  91. choices=Dataset.INDEXING_TECHNIQUE_LIST,
  92. nullable=True,
  93. help='Invalid indexing technique.')
  94. args = parser.parse_args()
  95. # The role of the current user in the ta table must be admin, owner, or editor
  96. if not current_user.is_editor:
  97. raise Forbidden()
  98. try:
  99. dataset = DatasetService.create_empty_dataset(
  100. tenant_id=current_user.current_tenant_id,
  101. name=args['name'],
  102. indexing_technique=args['indexing_technique'],
  103. account=current_user
  104. )
  105. except services.errors.dataset.DatasetNameDuplicateError:
  106. raise DatasetNameDuplicateError()
  107. return marshal(dataset, dataset_detail_fields), 201
  108. class DatasetApi(Resource):
  109. @setup_required
  110. @login_required
  111. @account_initialization_required
  112. def get(self, dataset_id):
  113. dataset_id_str = str(dataset_id)
  114. dataset = DatasetService.get_dataset(dataset_id_str)
  115. if dataset is None:
  116. raise NotFound("Dataset not found.")
  117. try:
  118. DatasetService.check_dataset_permission(
  119. dataset, current_user)
  120. except services.errors.account.NoPermissionError as e:
  121. raise Forbidden(str(e))
  122. data = marshal(dataset, dataset_detail_fields)
  123. # check embedding setting
  124. provider_manager = ProviderManager()
  125. configurations = provider_manager.get_configurations(
  126. tenant_id=current_user.current_tenant_id
  127. )
  128. embedding_models = configurations.get_models(
  129. model_type=ModelType.TEXT_EMBEDDING,
  130. only_active=True
  131. )
  132. model_names = []
  133. for embedding_model in embedding_models:
  134. model_names.append(f"{embedding_model.model}:{embedding_model.provider.provider}")
  135. if data['indexing_technique'] == 'high_quality':
  136. item_model = f"{data['embedding_model']}:{data['embedding_model_provider']}"
  137. if item_model in model_names:
  138. data['embedding_available'] = True
  139. else:
  140. data['embedding_available'] = False
  141. else:
  142. data['embedding_available'] = True
  143. return data, 200
  144. @setup_required
  145. @login_required
  146. @account_initialization_required
  147. def patch(self, dataset_id):
  148. dataset_id_str = str(dataset_id)
  149. dataset = DatasetService.get_dataset(dataset_id_str)
  150. if dataset is None:
  151. raise NotFound("Dataset not found.")
  152. # check user's model setting
  153. DatasetService.check_dataset_model_setting(dataset)
  154. parser = reqparse.RequestParser()
  155. parser.add_argument('name', nullable=False,
  156. help='type is required. Name must be between 1 to 40 characters.',
  157. type=_validate_name)
  158. parser.add_argument('description',
  159. location='json', store_missing=False,
  160. type=_validate_description_length)
  161. parser.add_argument('indexing_technique', type=str, location='json',
  162. choices=Dataset.INDEXING_TECHNIQUE_LIST,
  163. nullable=True,
  164. help='Invalid indexing technique.')
  165. parser.add_argument('permission', type=str, location='json', choices=(
  166. 'only_me', 'all_team_members'), help='Invalid permission.')
  167. parser.add_argument('embedding_model', type=str,
  168. location='json', help='Invalid embedding model.')
  169. parser.add_argument('embedding_model_provider', type=str,
  170. location='json', help='Invalid embedding model provider.')
  171. parser.add_argument('retrieval_model', type=dict, location='json', help='Invalid retrieval model.')
  172. args = parser.parse_args()
  173. # The role of the current user in the ta table must be admin, owner, or editor
  174. if not current_user.is_editor:
  175. raise Forbidden()
  176. dataset = DatasetService.update_dataset(
  177. dataset_id_str, args, current_user)
  178. if dataset is None:
  179. raise NotFound("Dataset not found.")
  180. return marshal(dataset, dataset_detail_fields), 200
  181. @setup_required
  182. @login_required
  183. @account_initialization_required
  184. def delete(self, dataset_id):
  185. dataset_id_str = str(dataset_id)
  186. # The role of the current user in the ta table must be admin, owner, or editor
  187. if not current_user.is_editor:
  188. raise Forbidden()
  189. try:
  190. if DatasetService.delete_dataset(dataset_id_str, current_user):
  191. return {'result': 'success'}, 204
  192. else:
  193. raise NotFound("Dataset not found.")
  194. except services.errors.dataset.DatasetInUseError:
  195. raise DatasetInUseError()
  196. class DatasetQueryApi(Resource):
  197. @setup_required
  198. @login_required
  199. @account_initialization_required
  200. def get(self, dataset_id):
  201. dataset_id_str = str(dataset_id)
  202. dataset = DatasetService.get_dataset(dataset_id_str)
  203. if dataset is None:
  204. raise NotFound("Dataset not found.")
  205. try:
  206. DatasetService.check_dataset_permission(dataset, current_user)
  207. except services.errors.account.NoPermissionError as e:
  208. raise Forbidden(str(e))
  209. page = request.args.get('page', default=1, type=int)
  210. limit = request.args.get('limit', default=20, type=int)
  211. dataset_queries, total = DatasetService.get_dataset_queries(
  212. dataset_id=dataset.id,
  213. page=page,
  214. per_page=limit
  215. )
  216. response = {
  217. 'data': marshal(dataset_queries, dataset_query_detail_fields),
  218. 'has_more': len(dataset_queries) == limit,
  219. 'limit': limit,
  220. 'total': total,
  221. 'page': page
  222. }
  223. return response, 200
  224. class DatasetIndexingEstimateApi(Resource):
  225. @setup_required
  226. @login_required
  227. @account_initialization_required
  228. def post(self):
  229. parser = reqparse.RequestParser()
  230. parser.add_argument('info_list', type=dict, required=True, nullable=True, location='json')
  231. parser.add_argument('process_rule', type=dict, required=True, nullable=True, location='json')
  232. parser.add_argument('indexing_technique', type=str, required=True,
  233. choices=Dataset.INDEXING_TECHNIQUE_LIST,
  234. nullable=True, location='json')
  235. parser.add_argument('doc_form', type=str, default='text_model', required=False, nullable=False, location='json')
  236. parser.add_argument('dataset_id', type=str, required=False, nullable=False, location='json')
  237. parser.add_argument('doc_language', type=str, default='English', required=False, nullable=False,
  238. location='json')
  239. args = parser.parse_args()
  240. # validate args
  241. DocumentService.estimate_args_validate(args)
  242. extract_settings = []
  243. if args['info_list']['data_source_type'] == 'upload_file':
  244. file_ids = args['info_list']['file_info_list']['file_ids']
  245. file_details = db.session.query(UploadFile).filter(
  246. UploadFile.tenant_id == current_user.current_tenant_id,
  247. UploadFile.id.in_(file_ids)
  248. ).all()
  249. if file_details is None:
  250. raise NotFound("File not found.")
  251. if file_details:
  252. for file_detail in file_details:
  253. extract_setting = ExtractSetting(
  254. datasource_type="upload_file",
  255. upload_file=file_detail,
  256. document_model=args['doc_form']
  257. )
  258. extract_settings.append(extract_setting)
  259. elif args['info_list']['data_source_type'] == 'notion_import':
  260. notion_info_list = args['info_list']['notion_info_list']
  261. for notion_info in notion_info_list:
  262. workspace_id = notion_info['workspace_id']
  263. for page in notion_info['pages']:
  264. extract_setting = ExtractSetting(
  265. datasource_type="notion_import",
  266. notion_info={
  267. "notion_workspace_id": workspace_id,
  268. "notion_obj_id": page['page_id'],
  269. "notion_page_type": page['type'],
  270. "tenant_id": current_user.current_tenant_id
  271. },
  272. document_model=args['doc_form']
  273. )
  274. extract_settings.append(extract_setting)
  275. elif args['info_list']['data_source_type'] == 'website_crawl':
  276. website_info_list = args['info_list']['website_info_list']
  277. for url in website_info_list['urls']:
  278. extract_setting = ExtractSetting(
  279. datasource_type="website_crawl",
  280. website_info={
  281. "provider": website_info_list['provider'],
  282. "job_id": website_info_list['job_id'],
  283. "url": url,
  284. "tenant_id": current_user.current_tenant_id,
  285. "mode": 'crawl',
  286. "only_main_content": website_info_list['only_main_content']
  287. },
  288. document_model=args['doc_form']
  289. )
  290. extract_settings.append(extract_setting)
  291. else:
  292. raise ValueError('Data source type not support')
  293. indexing_runner = IndexingRunner()
  294. try:
  295. response = indexing_runner.indexing_estimate(current_user.current_tenant_id, extract_settings,
  296. args['process_rule'], args['doc_form'],
  297. args['doc_language'], args['dataset_id'],
  298. args['indexing_technique'])
  299. except LLMBadRequestError:
  300. raise ProviderNotInitializeError(
  301. "No Embedding Model available. Please configure a valid provider "
  302. "in the Settings -> Model Provider.")
  303. except ProviderTokenNotInitError as ex:
  304. raise ProviderNotInitializeError(ex.description)
  305. return response, 200
  306. class DatasetRelatedAppListApi(Resource):
  307. @setup_required
  308. @login_required
  309. @account_initialization_required
  310. @marshal_with(related_app_list)
  311. def get(self, dataset_id):
  312. dataset_id_str = str(dataset_id)
  313. dataset = DatasetService.get_dataset(dataset_id_str)
  314. if dataset is None:
  315. raise NotFound("Dataset not found.")
  316. try:
  317. DatasetService.check_dataset_permission(dataset, current_user)
  318. except services.errors.account.NoPermissionError as e:
  319. raise Forbidden(str(e))
  320. app_dataset_joins = DatasetService.get_related_apps(dataset.id)
  321. related_apps = []
  322. for app_dataset_join in app_dataset_joins:
  323. app_model = app_dataset_join.app
  324. if app_model:
  325. related_apps.append(app_model)
  326. return {
  327. 'data': related_apps,
  328. 'total': len(related_apps)
  329. }, 200
  330. class DatasetIndexingStatusApi(Resource):
  331. @setup_required
  332. @login_required
  333. @account_initialization_required
  334. def get(self, dataset_id):
  335. dataset_id = str(dataset_id)
  336. documents = db.session.query(Document).filter(
  337. Document.dataset_id == dataset_id,
  338. Document.tenant_id == current_user.current_tenant_id
  339. ).all()
  340. documents_status = []
  341. for document in documents:
  342. completed_segments = DocumentSegment.query.filter(DocumentSegment.completed_at.isnot(None),
  343. DocumentSegment.document_id == str(document.id),
  344. DocumentSegment.status != 're_segment').count()
  345. total_segments = DocumentSegment.query.filter(DocumentSegment.document_id == str(document.id),
  346. DocumentSegment.status != 're_segment').count()
  347. document.completed_segments = completed_segments
  348. document.total_segments = total_segments
  349. documents_status.append(marshal(document, document_status_fields))
  350. data = {
  351. 'data': documents_status
  352. }
  353. return data
  354. class DatasetApiKeyApi(Resource):
  355. max_keys = 10
  356. token_prefix = 'dataset-'
  357. resource_type = 'dataset'
  358. @setup_required
  359. @login_required
  360. @account_initialization_required
  361. @marshal_with(api_key_list)
  362. def get(self):
  363. keys = db.session.query(ApiToken). \
  364. filter(ApiToken.type == self.resource_type, ApiToken.tenant_id == current_user.current_tenant_id). \
  365. all()
  366. return {"items": keys}
  367. @setup_required
  368. @login_required
  369. @account_initialization_required
  370. @marshal_with(api_key_fields)
  371. def post(self):
  372. # The role of the current user in the ta table must be admin or owner
  373. if not current_user.is_admin_or_owner:
  374. raise Forbidden()
  375. current_key_count = db.session.query(ApiToken). \
  376. filter(ApiToken.type == self.resource_type, ApiToken.tenant_id == current_user.current_tenant_id). \
  377. count()
  378. if current_key_count >= self.max_keys:
  379. flask_restful.abort(
  380. 400,
  381. message=f"Cannot create more than {self.max_keys} API keys for this resource type.",
  382. code='max_keys_exceeded'
  383. )
  384. key = ApiToken.generate_api_key(self.token_prefix, 24)
  385. api_token = ApiToken()
  386. api_token.tenant_id = current_user.current_tenant_id
  387. api_token.token = key
  388. api_token.type = self.resource_type
  389. db.session.add(api_token)
  390. db.session.commit()
  391. return api_token, 200
  392. class DatasetApiDeleteApi(Resource):
  393. resource_type = 'dataset'
  394. @setup_required
  395. @login_required
  396. @account_initialization_required
  397. def delete(self, api_key_id):
  398. api_key_id = str(api_key_id)
  399. # The role of the current user in the ta table must be admin or owner
  400. if not current_user.is_admin_or_owner:
  401. raise Forbidden()
  402. key = db.session.query(ApiToken). \
  403. filter(ApiToken.tenant_id == current_user.current_tenant_id, ApiToken.type == self.resource_type,
  404. ApiToken.id == api_key_id). \
  405. first()
  406. if key is None:
  407. flask_restful.abort(404, message='API key not found')
  408. db.session.query(ApiToken).filter(ApiToken.id == api_key_id).delete()
  409. db.session.commit()
  410. return {'result': 'success'}, 204
  411. class DatasetApiBaseUrlApi(Resource):
  412. @setup_required
  413. @login_required
  414. @account_initialization_required
  415. def get(self):
  416. return {
  417. 'api_base_url': (current_app.config['SERVICE_API_URL'] if current_app.config['SERVICE_API_URL']
  418. else request.host_url.rstrip('/')) + '/v1'
  419. }
  420. class DatasetRetrievalSettingApi(Resource):
  421. @setup_required
  422. @login_required
  423. @account_initialization_required
  424. def get(self):
  425. vector_type = current_app.config['VECTOR_STORE']
  426. match vector_type:
  427. case VectorType.MILVUS | VectorType.RELYT | VectorType.PGVECTOR | VectorType.TIDB_VECTOR | VectorType.CHROMA | VectorType.TENCENT:
  428. return {
  429. 'retrieval_method': [
  430. RetrievalMethod.SEMANTIC_SEARCH
  431. ]
  432. }
  433. case VectorType.QDRANT | VectorType.WEAVIATE | VectorType.OPENSEARCH:
  434. return {
  435. 'retrieval_method': [
  436. RetrievalMethod.SEMANTIC_SEARCH,
  437. RetrievalMethod.FULL_TEXT_SEARCH,
  438. RetrievalMethod.HYBRID_SEARCH,
  439. ]
  440. }
  441. case _:
  442. raise ValueError(f"Unsupported vector db type {vector_type}.")
  443. class DatasetRetrievalSettingMockApi(Resource):
  444. @setup_required
  445. @login_required
  446. @account_initialization_required
  447. def get(self, vector_type):
  448. match vector_type:
  449. case VectorType.MILVUS | VectorType.RELYT | VectorType.PGVECTOR | VectorType.TIDB_VECTOR | VectorType.CHROMA | VectorType.TENCEN:
  450. return {
  451. 'retrieval_method': [
  452. RetrievalMethod.SEMANTIC_SEARCH
  453. ]
  454. }
  455. case VectorType.QDRANT | VectorType.WEAVIATE | VectorType.OPENSEARCH:
  456. return {
  457. 'retrieval_method': [
  458. RetrievalMethod.SEMANTIC_SEARCH,
  459. RetrievalMethod.FULL_TEXT_SEARCH,
  460. RetrievalMethod.HYBRID_SEARCH,
  461. ]
  462. }
  463. case _:
  464. raise ValueError(f"Unsupported vector db type {vector_type}.")
  465. class DatasetErrorDocs(Resource):
  466. @setup_required
  467. @login_required
  468. @account_initialization_required
  469. def get(self, dataset_id):
  470. dataset_id_str = str(dataset_id)
  471. dataset = DatasetService.get_dataset(dataset_id_str)
  472. if dataset is None:
  473. raise NotFound("Dataset not found.")
  474. results = DocumentService.get_error_documents_by_dataset_id(dataset_id_str)
  475. return {
  476. 'data': [marshal(item, document_status_fields) for item in results],
  477. 'total': len(results)
  478. }, 200
  479. api.add_resource(DatasetListApi, '/datasets')
  480. api.add_resource(DatasetApi, '/datasets/<uuid:dataset_id>')
  481. api.add_resource(DatasetQueryApi, '/datasets/<uuid:dataset_id>/queries')
  482. api.add_resource(DatasetErrorDocs, '/datasets/<uuid:dataset_id>/error-docs')
  483. api.add_resource(DatasetIndexingEstimateApi, '/datasets/indexing-estimate')
  484. api.add_resource(DatasetRelatedAppListApi, '/datasets/<uuid:dataset_id>/related-apps')
  485. api.add_resource(DatasetIndexingStatusApi, '/datasets/<uuid:dataset_id>/indexing-status')
  486. api.add_resource(DatasetApiKeyApi, '/datasets/api-keys')
  487. api.add_resource(DatasetApiDeleteApi, '/datasets/api-keys/<uuid:api_key_id>')
  488. api.add_resource(DatasetApiBaseUrlApi, '/datasets/api-base-info')
  489. api.add_resource(DatasetRetrievalSettingApi, '/datasets/retrieval-setting')
  490. api.add_resource(DatasetRetrievalSettingMockApi, '/datasets/retrieval-setting/<string:vector_type>')