app_runner.py 7.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183
  1. import logging
  2. from typing import cast
  3. from core.app.apps.base_app_queue_manager import AppQueueManager
  4. from core.app.apps.base_app_runner import AppRunner
  5. from core.app.apps.completion.app_config_manager import CompletionAppConfig
  6. from core.app.entities.app_invoke_entities import (
  7. CompletionAppGenerateEntity,
  8. )
  9. from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
  10. from core.model_manager import ModelInstance
  11. from core.moderation.base import ModerationException
  12. from core.rag.retrieval.dataset_retrieval import DatasetRetrieval
  13. from extensions.ext_database import db
  14. from models.model import App, Message
  15. logger = logging.getLogger(__name__)
  16. class CompletionAppRunner(AppRunner):
  17. """
  18. Completion Application Runner
  19. """
  20. def run(self, application_generate_entity: CompletionAppGenerateEntity,
  21. queue_manager: AppQueueManager,
  22. message: Message) -> None:
  23. """
  24. Run application
  25. :param application_generate_entity: application generate entity
  26. :param queue_manager: application queue manager
  27. :param message: message
  28. :return:
  29. """
  30. app_config = application_generate_entity.app_config
  31. app_config = cast(CompletionAppConfig, app_config)
  32. app_record = db.session.query(App).filter(App.id == app_config.app_id).first()
  33. if not app_record:
  34. raise ValueError("App not found")
  35. inputs = application_generate_entity.inputs
  36. query = application_generate_entity.query
  37. files = application_generate_entity.files
  38. # Pre-calculate the number of tokens of the prompt messages,
  39. # and return the rest number of tokens by model context token size limit and max token size limit.
  40. # If the rest number of tokens is not enough, raise exception.
  41. # Include: prompt template, inputs, query(optional), files(optional)
  42. # Not Include: memory, external data, dataset context
  43. self.get_pre_calculate_rest_tokens(
  44. app_record=app_record,
  45. model_config=application_generate_entity.model_conf,
  46. prompt_template_entity=app_config.prompt_template,
  47. inputs=inputs,
  48. files=files,
  49. query=query
  50. )
  51. # organize all inputs and template to prompt messages
  52. # Include: prompt template, inputs, query(optional), files(optional)
  53. prompt_messages, stop = self.organize_prompt_messages(
  54. app_record=app_record,
  55. model_config=application_generate_entity.model_conf,
  56. prompt_template_entity=app_config.prompt_template,
  57. inputs=inputs,
  58. files=files,
  59. query=query
  60. )
  61. # moderation
  62. try:
  63. # process sensitive_word_avoidance
  64. _, inputs, query = self.moderation_for_inputs(
  65. app_id=app_record.id,
  66. tenant_id=app_config.tenant_id,
  67. app_generate_entity=application_generate_entity,
  68. inputs=inputs,
  69. query=query,
  70. message_id=message.id
  71. )
  72. except ModerationException as e:
  73. self.direct_output(
  74. queue_manager=queue_manager,
  75. app_generate_entity=application_generate_entity,
  76. prompt_messages=prompt_messages,
  77. text=str(e),
  78. stream=application_generate_entity.stream
  79. )
  80. return
  81. # fill in variable inputs from external data tools if exists
  82. external_data_tools = app_config.external_data_variables
  83. if external_data_tools:
  84. inputs = self.fill_in_inputs_from_external_data_tools(
  85. tenant_id=app_record.tenant_id,
  86. app_id=app_record.id,
  87. external_data_tools=external_data_tools,
  88. inputs=inputs,
  89. query=query
  90. )
  91. # get context from datasets
  92. context = None
  93. if app_config.dataset and app_config.dataset.dataset_ids:
  94. hit_callback = DatasetIndexToolCallbackHandler(
  95. queue_manager,
  96. app_record.id,
  97. message.id,
  98. application_generate_entity.user_id,
  99. application_generate_entity.invoke_from
  100. )
  101. dataset_config = app_config.dataset
  102. if dataset_config and dataset_config.retrieve_config.query_variable:
  103. query = inputs.get(dataset_config.retrieve_config.query_variable, "")
  104. dataset_retrieval = DatasetRetrieval(application_generate_entity)
  105. context = dataset_retrieval.retrieve(
  106. app_id=app_record.id,
  107. user_id=application_generate_entity.user_id,
  108. tenant_id=app_record.tenant_id,
  109. model_config=application_generate_entity.model_conf,
  110. config=dataset_config,
  111. query=query,
  112. invoke_from=application_generate_entity.invoke_from,
  113. show_retrieve_source=app_config.additional_features.show_retrieve_source,
  114. hit_callback=hit_callback,
  115. message_id=message.id
  116. )
  117. # reorganize all inputs and template to prompt messages
  118. # Include: prompt template, inputs, query(optional), files(optional)
  119. # memory(optional), external data, dataset context(optional)
  120. prompt_messages, stop = self.organize_prompt_messages(
  121. app_record=app_record,
  122. model_config=application_generate_entity.model_conf,
  123. prompt_template_entity=app_config.prompt_template,
  124. inputs=inputs,
  125. files=files,
  126. query=query,
  127. context=context
  128. )
  129. # check hosting moderation
  130. hosting_moderation_result = self.check_hosting_moderation(
  131. application_generate_entity=application_generate_entity,
  132. queue_manager=queue_manager,
  133. prompt_messages=prompt_messages
  134. )
  135. if hosting_moderation_result:
  136. return
  137. # Re-calculate the max tokens if sum(prompt_token + max_tokens) over model token limit
  138. self.recalc_llm_max_tokens(
  139. model_config=application_generate_entity.model_conf,
  140. prompt_messages=prompt_messages
  141. )
  142. # Invoke model
  143. model_instance = ModelInstance(
  144. provider_model_bundle=application_generate_entity.model_conf.provider_model_bundle,
  145. model=application_generate_entity.model_conf.model
  146. )
  147. db.session.close()
  148. invoke_result = model_instance.invoke_llm(
  149. prompt_messages=prompt_messages,
  150. model_parameters=application_generate_entity.model_conf.parameters,
  151. stop=stop,
  152. stream=application_generate_entity.stream,
  153. user=application_generate_entity.user_id,
  154. )
  155. # handle invoke result
  156. self._handle_invoke_result(
  157. invoke_result=invoke_result,
  158. queue_manager=queue_manager,
  159. stream=application_generate_entity.stream
  160. )