node.py 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708
  1. import json
  2. from collections.abc import Generator, Mapping, Sequence
  3. from typing import TYPE_CHECKING, Any, Optional, cast
  4. from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEntity
  5. from core.entities.model_entities import ModelStatus
  6. from core.entities.provider_entities import QuotaUnit
  7. from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
  8. from core.memory.token_buffer_memory import TokenBufferMemory
  9. from core.model_manager import ModelInstance, ModelManager
  10. from core.model_runtime.entities import (
  11. AudioPromptMessageContent,
  12. ImagePromptMessageContent,
  13. PromptMessage,
  14. PromptMessageContentType,
  15. TextPromptMessageContent,
  16. )
  17. from core.model_runtime.entities.llm_entities import LLMResult, LLMUsage
  18. from core.model_runtime.entities.model_entities import ModelType
  19. from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
  20. from core.model_runtime.utils.encoders import jsonable_encoder
  21. from core.prompt.advanced_prompt_transform import AdvancedPromptTransform
  22. from core.prompt.entities.advanced_prompt_entities import CompletionModelPromptTemplate, MemoryConfig
  23. from core.prompt.utils.prompt_message_util import PromptMessageUtil
  24. from core.variables import (
  25. ArrayAnySegment,
  26. ArrayFileSegment,
  27. ArraySegment,
  28. FileSegment,
  29. NoneSegment,
  30. ObjectSegment,
  31. StringSegment,
  32. )
  33. from core.workflow.constants import SYSTEM_VARIABLE_NODE_ID
  34. from core.workflow.entities.node_entities import NodeRunMetadataKey, NodeRunResult
  35. from core.workflow.enums import SystemVariableKey
  36. from core.workflow.graph_engine.entities.event import InNodeEvent
  37. from core.workflow.nodes.base import BaseNode
  38. from core.workflow.nodes.enums import NodeType
  39. from core.workflow.nodes.event import (
  40. ModelInvokeCompletedEvent,
  41. NodeEvent,
  42. RunCompletedEvent,
  43. RunRetrieverResourceEvent,
  44. RunStreamChunkEvent,
  45. )
  46. from core.workflow.utils.variable_template_parser import VariableTemplateParser
  47. from extensions.ext_database import db
  48. from models.model import Conversation
  49. from models.provider import Provider, ProviderType
  50. from models.workflow import WorkflowNodeExecutionStatus
  51. from .entities import (
  52. LLMNodeChatModelMessage,
  53. LLMNodeCompletionModelPromptTemplate,
  54. LLMNodeData,
  55. ModelConfig,
  56. )
  57. if TYPE_CHECKING:
  58. from core.file.models import File
  59. class LLMNode(BaseNode[LLMNodeData]):
  60. _node_data_cls = LLMNodeData
  61. _node_type = NodeType.LLM
  62. def _run(self) -> NodeRunResult | Generator[NodeEvent | InNodeEvent, None, None]:
  63. node_inputs = None
  64. process_data = None
  65. try:
  66. # init messages template
  67. self.node_data.prompt_template = self._transform_chat_messages(self.node_data.prompt_template)
  68. # fetch variables and fetch values from variable pool
  69. inputs = self._fetch_inputs(node_data=self.node_data)
  70. # fetch jinja2 inputs
  71. jinja_inputs = self._fetch_jinja_inputs(node_data=self.node_data)
  72. # merge inputs
  73. inputs.update(jinja_inputs)
  74. node_inputs = {}
  75. # fetch files
  76. files = (
  77. self._fetch_files(selector=self.node_data.vision.configs.variable_selector)
  78. if self.node_data.vision.enabled
  79. else []
  80. )
  81. if files:
  82. node_inputs["#files#"] = [file.to_dict() for file in files]
  83. # fetch context value
  84. generator = self._fetch_context(node_data=self.node_data)
  85. context = None
  86. for event in generator:
  87. if isinstance(event, RunRetrieverResourceEvent):
  88. context = event.context
  89. yield event
  90. if context:
  91. node_inputs["#context#"] = context # type: ignore
  92. # fetch model config
  93. model_instance, model_config = self._fetch_model_config(self.node_data.model)
  94. # fetch memory
  95. memory = self._fetch_memory(node_data_memory=self.node_data.memory, model_instance=model_instance)
  96. # fetch prompt messages
  97. if self.node_data.memory:
  98. query = self.graph_runtime_state.variable_pool.get((SYSTEM_VARIABLE_NODE_ID, SystemVariableKey.QUERY))
  99. if not query:
  100. raise ValueError("Query not found")
  101. query = query.text
  102. else:
  103. query = None
  104. prompt_messages, stop = self._fetch_prompt_messages(
  105. system_query=query,
  106. inputs=inputs,
  107. files=files,
  108. context=context,
  109. memory=memory,
  110. model_config=model_config,
  111. prompt_template=self.node_data.prompt_template,
  112. memory_config=self.node_data.memory,
  113. vision_enabled=self.node_data.vision.enabled,
  114. vision_detail=self.node_data.vision.configs.detail,
  115. )
  116. process_data = {
  117. "model_mode": model_config.mode,
  118. "prompts": PromptMessageUtil.prompt_messages_to_prompt_for_saving(
  119. model_mode=model_config.mode, prompt_messages=prompt_messages
  120. ),
  121. "model_provider": model_config.provider,
  122. "model_name": model_config.model,
  123. }
  124. # handle invoke result
  125. generator = self._invoke_llm(
  126. node_data_model=self.node_data.model,
  127. model_instance=model_instance,
  128. prompt_messages=prompt_messages,
  129. stop=stop,
  130. )
  131. result_text = ""
  132. usage = LLMUsage.empty_usage()
  133. finish_reason = None
  134. for event in generator:
  135. if isinstance(event, RunStreamChunkEvent):
  136. yield event
  137. elif isinstance(event, ModelInvokeCompletedEvent):
  138. result_text = event.text
  139. usage = event.usage
  140. finish_reason = event.finish_reason
  141. break
  142. except Exception as e:
  143. yield RunCompletedEvent(
  144. run_result=NodeRunResult(
  145. status=WorkflowNodeExecutionStatus.FAILED,
  146. error=str(e),
  147. inputs=node_inputs,
  148. process_data=process_data,
  149. )
  150. )
  151. return
  152. outputs = {"text": result_text, "usage": jsonable_encoder(usage), "finish_reason": finish_reason}
  153. yield RunCompletedEvent(
  154. run_result=NodeRunResult(
  155. status=WorkflowNodeExecutionStatus.SUCCEEDED,
  156. inputs=node_inputs,
  157. process_data=process_data,
  158. outputs=outputs,
  159. metadata={
  160. NodeRunMetadataKey.TOTAL_TOKENS: usage.total_tokens,
  161. NodeRunMetadataKey.TOTAL_PRICE: usage.total_price,
  162. NodeRunMetadataKey.CURRENCY: usage.currency,
  163. },
  164. llm_usage=usage,
  165. )
  166. )
  167. def _invoke_llm(
  168. self,
  169. node_data_model: ModelConfig,
  170. model_instance: ModelInstance,
  171. prompt_messages: list[PromptMessage],
  172. stop: Optional[list[str]] = None,
  173. ) -> Generator[NodeEvent, None, None]:
  174. db.session.close()
  175. invoke_result = model_instance.invoke_llm(
  176. prompt_messages=prompt_messages,
  177. model_parameters=node_data_model.completion_params,
  178. stop=stop,
  179. stream=True,
  180. user=self.user_id,
  181. )
  182. # handle invoke result
  183. generator = self._handle_invoke_result(invoke_result=invoke_result)
  184. usage = LLMUsage.empty_usage()
  185. for event in generator:
  186. yield event
  187. if isinstance(event, ModelInvokeCompletedEvent):
  188. usage = event.usage
  189. # deduct quota
  190. self.deduct_llm_quota(tenant_id=self.tenant_id, model_instance=model_instance, usage=usage)
  191. def _handle_invoke_result(self, invoke_result: LLMResult | Generator) -> Generator[NodeEvent, None, None]:
  192. if isinstance(invoke_result, LLMResult):
  193. return
  194. model = None
  195. prompt_messages: list[PromptMessage] = []
  196. full_text = ""
  197. usage = None
  198. finish_reason = None
  199. for result in invoke_result:
  200. text = result.delta.message.content
  201. full_text += text
  202. yield RunStreamChunkEvent(chunk_content=text, from_variable_selector=[self.node_id, "text"])
  203. if not model:
  204. model = result.model
  205. if not prompt_messages:
  206. prompt_messages = result.prompt_messages
  207. if not usage and result.delta.usage:
  208. usage = result.delta.usage
  209. if not finish_reason and result.delta.finish_reason:
  210. finish_reason = result.delta.finish_reason
  211. if not usage:
  212. usage = LLMUsage.empty_usage()
  213. yield ModelInvokeCompletedEvent(text=full_text, usage=usage, finish_reason=finish_reason)
  214. def _transform_chat_messages(
  215. self, messages: Sequence[LLMNodeChatModelMessage] | LLMNodeCompletionModelPromptTemplate, /
  216. ) -> Sequence[LLMNodeChatModelMessage] | LLMNodeCompletionModelPromptTemplate:
  217. if isinstance(messages, LLMNodeCompletionModelPromptTemplate):
  218. if messages.edition_type == "jinja2" and messages.jinja2_text:
  219. messages.text = messages.jinja2_text
  220. return messages
  221. for message in messages:
  222. if message.edition_type == "jinja2" and message.jinja2_text:
  223. message.text = message.jinja2_text
  224. return messages
  225. def _fetch_jinja_inputs(self, node_data: LLMNodeData) -> dict[str, str]:
  226. variables = {}
  227. if not node_data.prompt_config:
  228. return variables
  229. for variable_selector in node_data.prompt_config.jinja2_variables or []:
  230. variable_name = variable_selector.variable
  231. variable = self.graph_runtime_state.variable_pool.get(variable_selector.value_selector)
  232. if variable is None:
  233. raise ValueError(f"Variable {variable_selector.variable} not found")
  234. def parse_dict(input_dict: Mapping[str, Any]) -> str:
  235. """
  236. Parse dict into string
  237. """
  238. # check if it's a context structure
  239. if "metadata" in input_dict and "_source" in input_dict["metadata"] and "content" in input_dict:
  240. return input_dict["content"]
  241. # else, parse the dict
  242. try:
  243. return json.dumps(input_dict, ensure_ascii=False)
  244. except Exception:
  245. return str(input_dict)
  246. if isinstance(variable, ArraySegment):
  247. result = ""
  248. for item in variable.value:
  249. if isinstance(item, dict):
  250. result += parse_dict(item)
  251. else:
  252. result += str(item)
  253. result += "\n"
  254. value = result.strip()
  255. elif isinstance(variable, ObjectSegment):
  256. value = parse_dict(variable.value)
  257. else:
  258. value = variable.text
  259. variables[variable_name] = value
  260. return variables
  261. def _fetch_inputs(self, node_data: LLMNodeData) -> dict[str, Any]:
  262. inputs = {}
  263. prompt_template = node_data.prompt_template
  264. variable_selectors = []
  265. if isinstance(prompt_template, list):
  266. for prompt in prompt_template:
  267. variable_template_parser = VariableTemplateParser(template=prompt.text)
  268. variable_selectors.extend(variable_template_parser.extract_variable_selectors())
  269. elif isinstance(prompt_template, CompletionModelPromptTemplate):
  270. variable_template_parser = VariableTemplateParser(template=prompt_template.text)
  271. variable_selectors = variable_template_parser.extract_variable_selectors()
  272. for variable_selector in variable_selectors:
  273. variable = self.graph_runtime_state.variable_pool.get(variable_selector.value_selector)
  274. if variable is None:
  275. raise ValueError(f"Variable {variable_selector.variable} not found")
  276. if isinstance(variable, NoneSegment):
  277. inputs[variable_selector.variable] = ""
  278. inputs[variable_selector.variable] = variable.to_object()
  279. memory = node_data.memory
  280. if memory and memory.query_prompt_template:
  281. query_variable_selectors = VariableTemplateParser(
  282. template=memory.query_prompt_template
  283. ).extract_variable_selectors()
  284. for variable_selector in query_variable_selectors:
  285. variable = self.graph_runtime_state.variable_pool.get(variable_selector.value_selector)
  286. if variable is None:
  287. raise ValueError(f"Variable {variable_selector.variable} not found")
  288. if isinstance(variable, NoneSegment):
  289. continue
  290. inputs[variable_selector.variable] = variable.to_object()
  291. return inputs
  292. def _fetch_files(self, *, selector: Sequence[str]) -> Sequence["File"]:
  293. variable = self.graph_runtime_state.variable_pool.get(selector)
  294. if variable is None:
  295. return []
  296. if isinstance(variable, FileSegment):
  297. return [variable.value]
  298. if isinstance(variable, ArrayFileSegment):
  299. return variable.value
  300. # FIXME: Temporary fix for empty array,
  301. # all variables added to variable pool should be a Segment instance.
  302. if isinstance(variable, ArrayAnySegment) and len(variable.value) == 0:
  303. return []
  304. raise ValueError(f"Invalid variable type: {type(variable)}")
  305. def _fetch_context(self, node_data: LLMNodeData):
  306. if not node_data.context.enabled:
  307. return
  308. if not node_data.context.variable_selector:
  309. return
  310. context_value_variable = self.graph_runtime_state.variable_pool.get(node_data.context.variable_selector)
  311. if context_value_variable:
  312. if isinstance(context_value_variable, StringSegment):
  313. yield RunRetrieverResourceEvent(retriever_resources=[], context=context_value_variable.value)
  314. elif isinstance(context_value_variable, ArraySegment):
  315. context_str = ""
  316. original_retriever_resource = []
  317. for item in context_value_variable.value:
  318. if isinstance(item, str):
  319. context_str += item + "\n"
  320. else:
  321. if "content" not in item:
  322. raise ValueError(f"Invalid context structure: {item}")
  323. context_str += item["content"] + "\n"
  324. retriever_resource = self._convert_to_original_retriever_resource(item)
  325. if retriever_resource:
  326. original_retriever_resource.append(retriever_resource)
  327. yield RunRetrieverResourceEvent(
  328. retriever_resources=original_retriever_resource, context=context_str.strip()
  329. )
  330. def _convert_to_original_retriever_resource(self, context_dict: dict) -> Optional[dict]:
  331. if (
  332. "metadata" in context_dict
  333. and "_source" in context_dict["metadata"]
  334. and context_dict["metadata"]["_source"] == "knowledge"
  335. ):
  336. metadata = context_dict.get("metadata", {})
  337. source = {
  338. "position": metadata.get("position"),
  339. "dataset_id": metadata.get("dataset_id"),
  340. "dataset_name": metadata.get("dataset_name"),
  341. "document_id": metadata.get("document_id"),
  342. "document_name": metadata.get("document_name"),
  343. "data_source_type": metadata.get("document_data_source_type"),
  344. "segment_id": metadata.get("segment_id"),
  345. "retriever_from": metadata.get("retriever_from"),
  346. "score": metadata.get("score"),
  347. "hit_count": metadata.get("segment_hit_count"),
  348. "word_count": metadata.get("segment_word_count"),
  349. "segment_position": metadata.get("segment_position"),
  350. "index_node_hash": metadata.get("segment_index_node_hash"),
  351. "content": context_dict.get("content"),
  352. "page": metadata.get("page"),
  353. }
  354. return source
  355. return None
  356. def _fetch_model_config(
  357. self, node_data_model: ModelConfig
  358. ) -> tuple[ModelInstance, ModelConfigWithCredentialsEntity]:
  359. model_name = node_data_model.name
  360. provider_name = node_data_model.provider
  361. model_manager = ModelManager()
  362. model_instance = model_manager.get_model_instance(
  363. tenant_id=self.tenant_id, model_type=ModelType.LLM, provider=provider_name, model=model_name
  364. )
  365. provider_model_bundle = model_instance.provider_model_bundle
  366. model_type_instance = model_instance.model_type_instance
  367. model_type_instance = cast(LargeLanguageModel, model_type_instance)
  368. model_credentials = model_instance.credentials
  369. # check model
  370. provider_model = provider_model_bundle.configuration.get_provider_model(
  371. model=model_name, model_type=ModelType.LLM
  372. )
  373. if provider_model is None:
  374. raise ValueError(f"Model {model_name} not exist.")
  375. if provider_model.status == ModelStatus.NO_CONFIGURE:
  376. raise ProviderTokenNotInitError(f"Model {model_name} credentials is not initialized.")
  377. elif provider_model.status == ModelStatus.NO_PERMISSION:
  378. raise ModelCurrentlyNotSupportError(f"Dify Hosted OpenAI {model_name} currently not support.")
  379. elif provider_model.status == ModelStatus.QUOTA_EXCEEDED:
  380. raise QuotaExceededError(f"Model provider {provider_name} quota exceeded.")
  381. # model config
  382. completion_params = node_data_model.completion_params
  383. stop = []
  384. if "stop" in completion_params:
  385. stop = completion_params["stop"]
  386. del completion_params["stop"]
  387. # get model mode
  388. model_mode = node_data_model.mode
  389. if not model_mode:
  390. raise ValueError("LLM mode is required.")
  391. model_schema = model_type_instance.get_model_schema(model_name, model_credentials)
  392. if not model_schema:
  393. raise ValueError(f"Model {model_name} not exist.")
  394. return model_instance, ModelConfigWithCredentialsEntity(
  395. provider=provider_name,
  396. model=model_name,
  397. model_schema=model_schema,
  398. mode=model_mode,
  399. provider_model_bundle=provider_model_bundle,
  400. credentials=model_credentials,
  401. parameters=completion_params,
  402. stop=stop,
  403. )
  404. def _fetch_memory(
  405. self, node_data_memory: Optional[MemoryConfig], model_instance: ModelInstance
  406. ) -> Optional[TokenBufferMemory]:
  407. if not node_data_memory:
  408. return None
  409. # get conversation id
  410. conversation_id_variable = self.graph_runtime_state.variable_pool.get(
  411. ["sys", SystemVariableKey.CONVERSATION_ID.value]
  412. )
  413. if not isinstance(conversation_id_variable, StringSegment):
  414. return None
  415. conversation_id = conversation_id_variable.value
  416. # get conversation
  417. conversation = (
  418. db.session.query(Conversation)
  419. .filter(Conversation.app_id == self.app_id, Conversation.id == conversation_id)
  420. .first()
  421. )
  422. if not conversation:
  423. return None
  424. memory = TokenBufferMemory(conversation=conversation, model_instance=model_instance)
  425. return memory
  426. def _fetch_prompt_messages(
  427. self,
  428. *,
  429. system_query: str | None = None,
  430. inputs: dict[str, str] | None = None,
  431. files: Sequence["File"],
  432. context: str | None = None,
  433. memory: TokenBufferMemory | None = None,
  434. model_config: ModelConfigWithCredentialsEntity,
  435. prompt_template: Sequence[LLMNodeChatModelMessage] | LLMNodeCompletionModelPromptTemplate,
  436. memory_config: MemoryConfig | None = None,
  437. vision_enabled: bool = False,
  438. vision_detail: ImagePromptMessageContent.DETAIL,
  439. ) -> tuple[list[PromptMessage], Optional[list[str]]]:
  440. inputs = inputs or {}
  441. prompt_transform = AdvancedPromptTransform(with_variable_tmpl=True)
  442. prompt_messages = prompt_transform.get_prompt(
  443. prompt_template=prompt_template,
  444. inputs=inputs,
  445. query=system_query or "",
  446. files=files,
  447. context=context,
  448. memory_config=memory_config,
  449. memory=memory,
  450. model_config=model_config,
  451. )
  452. stop = model_config.stop
  453. filtered_prompt_messages = []
  454. for prompt_message in prompt_messages:
  455. if prompt_message.is_empty():
  456. continue
  457. if not isinstance(prompt_message.content, str):
  458. prompt_message_content = []
  459. for content_item in prompt_message.content or []:
  460. # Skip image if vision is disabled
  461. if not vision_enabled and content_item.type == PromptMessageContentType.IMAGE:
  462. continue
  463. if isinstance(content_item, ImagePromptMessageContent):
  464. # Override vision config if LLM node has vision config,
  465. # cuz vision detail is related to the configuration from FileUpload feature.
  466. content_item.detail = vision_detail
  467. prompt_message_content.append(content_item)
  468. elif isinstance(content_item, TextPromptMessageContent | AudioPromptMessageContent):
  469. prompt_message_content.append(content_item)
  470. if len(prompt_message_content) > 1:
  471. prompt_message.content = prompt_message_content
  472. elif (
  473. len(prompt_message_content) == 1 and prompt_message_content[0].type == PromptMessageContentType.TEXT
  474. ):
  475. prompt_message.content = prompt_message_content[0].data
  476. filtered_prompt_messages.append(prompt_message)
  477. if not filtered_prompt_messages:
  478. raise ValueError(
  479. "No prompt found in the LLM configuration. "
  480. "Please ensure a prompt is properly configured before proceeding."
  481. )
  482. return filtered_prompt_messages, stop
  483. @classmethod
  484. def deduct_llm_quota(cls, tenant_id: str, model_instance: ModelInstance, usage: LLMUsage) -> None:
  485. provider_model_bundle = model_instance.provider_model_bundle
  486. provider_configuration = provider_model_bundle.configuration
  487. if provider_configuration.using_provider_type != ProviderType.SYSTEM:
  488. return
  489. system_configuration = provider_configuration.system_configuration
  490. quota_unit = None
  491. for quota_configuration in system_configuration.quota_configurations:
  492. if quota_configuration.quota_type == system_configuration.current_quota_type:
  493. quota_unit = quota_configuration.quota_unit
  494. if quota_configuration.quota_limit == -1:
  495. return
  496. break
  497. used_quota = None
  498. if quota_unit:
  499. if quota_unit == QuotaUnit.TOKENS:
  500. used_quota = usage.total_tokens
  501. elif quota_unit == QuotaUnit.CREDITS:
  502. used_quota = 1
  503. if "gpt-4" in model_instance.model:
  504. used_quota = 20
  505. else:
  506. used_quota = 1
  507. if used_quota is not None and system_configuration.current_quota_type is not None:
  508. db.session.query(Provider).filter(
  509. Provider.tenant_id == tenant_id,
  510. Provider.provider_name == model_instance.provider,
  511. Provider.provider_type == ProviderType.SYSTEM.value,
  512. Provider.quota_type == system_configuration.current_quota_type.value,
  513. Provider.quota_limit > Provider.quota_used,
  514. ).update({"quota_used": Provider.quota_used + used_quota})
  515. db.session.commit()
  516. @classmethod
  517. def _extract_variable_selector_to_variable_mapping(
  518. cls,
  519. *,
  520. graph_config: Mapping[str, Any],
  521. node_id: str,
  522. node_data: LLMNodeData,
  523. ) -> Mapping[str, Sequence[str]]:
  524. prompt_template = node_data.prompt_template
  525. variable_selectors = []
  526. if isinstance(prompt_template, list) and all(
  527. isinstance(prompt, LLMNodeChatModelMessage) for prompt in prompt_template
  528. ):
  529. for prompt in prompt_template:
  530. if prompt.edition_type != "jinja2":
  531. variable_template_parser = VariableTemplateParser(template=prompt.text)
  532. variable_selectors.extend(variable_template_parser.extract_variable_selectors())
  533. elif isinstance(prompt_template, LLMNodeCompletionModelPromptTemplate):
  534. if prompt_template.edition_type != "jinja2":
  535. variable_template_parser = VariableTemplateParser(template=prompt_template.text)
  536. variable_selectors = variable_template_parser.extract_variable_selectors()
  537. else:
  538. raise ValueError(f"Invalid prompt template type: {type(prompt_template)}")
  539. variable_mapping = {}
  540. for variable_selector in variable_selectors:
  541. variable_mapping[variable_selector.variable] = variable_selector.value_selector
  542. memory = node_data.memory
  543. if memory and memory.query_prompt_template:
  544. query_variable_selectors = VariableTemplateParser(
  545. template=memory.query_prompt_template
  546. ).extract_variable_selectors()
  547. for variable_selector in query_variable_selectors:
  548. variable_mapping[variable_selector.variable] = variable_selector.value_selector
  549. if node_data.context.enabled:
  550. variable_mapping["#context#"] = node_data.context.variable_selector
  551. if node_data.vision.enabled:
  552. variable_mapping["#files#"] = ["sys", SystemVariableKey.FILES.value]
  553. if node_data.memory:
  554. variable_mapping["#sys.query#"] = ["sys", SystemVariableKey.QUERY.value]
  555. if node_data.prompt_config:
  556. enable_jinja = False
  557. if isinstance(prompt_template, list):
  558. for prompt in prompt_template:
  559. if prompt.edition_type == "jinja2":
  560. enable_jinja = True
  561. break
  562. else:
  563. if prompt_template.edition_type == "jinja2":
  564. enable_jinja = True
  565. if enable_jinja:
  566. for variable_selector in node_data.prompt_config.jinja2_variables or []:
  567. variable_mapping[variable_selector.variable] = variable_selector.value_selector
  568. variable_mapping = {node_id + "." + key: value for key, value in variable_mapping.items()}
  569. return variable_mapping
  570. @classmethod
  571. def get_default_config(cls, filters: Optional[dict] = None) -> dict:
  572. return {
  573. "type": "llm",
  574. "config": {
  575. "prompt_templates": {
  576. "chat_model": {
  577. "prompts": [
  578. {"role": "system", "text": "You are a helpful AI assistant.", "edition_type": "basic"}
  579. ]
  580. },
  581. "completion_model": {
  582. "conversation_histories_role": {"user_prefix": "Human", "assistant_prefix": "Assistant"},
  583. "prompt": {
  584. "text": "Here is the chat histories between human and assistant, inside "
  585. "<histories></histories> XML tags.\n\n<histories>\n{{"
  586. "#histories#}}\n</histories>\n\n\nHuman: {{#sys.query#}}\n\nAssistant:",
  587. "edition_type": "basic",
  588. },
  589. "stop": ["Human:"],
  590. },
  591. }
  592. },
  593. }