llm_generator.py 5.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168
  1. import logging
  2. from langchain import PromptTemplate
  3. from langchain.chat_models.base import BaseChatModel
  4. from langchain.schema import HumanMessage, OutputParserException
  5. from core.constant import llm_constant
  6. from core.llm.llm_builder import LLMBuilder
  7. from core.llm.streamable_open_ai import StreamableOpenAI
  8. from core.llm.token_calculator import TokenCalculator
  9. from core.prompt.output_parser.rule_config_generator import RuleConfigGeneratorOutputParser
  10. from core.prompt.output_parser.suggested_questions_after_answer import SuggestedQuestionsAfterAnswerOutputParser
  11. from core.prompt.prompt_template import JinjaPromptTemplate, OutLinePromptTemplate
  12. from core.prompt.prompts import CONVERSATION_TITLE_PROMPT, CONVERSATION_SUMMARY_PROMPT, INTRODUCTION_GENERATE_PROMPT
  13. # gpt-3.5-turbo works not well
  14. generate_base_model = 'text-davinci-003'
  15. class LLMGenerator:
  16. @classmethod
  17. def generate_conversation_name(cls, tenant_id: str, query, answer):
  18. prompt = CONVERSATION_TITLE_PROMPT
  19. prompt = prompt.format(query=query, answer=answer)
  20. llm: StreamableOpenAI = LLMBuilder.to_llm(
  21. tenant_id=tenant_id,
  22. model_name=generate_base_model,
  23. max_tokens=50
  24. )
  25. if isinstance(llm, BaseChatModel):
  26. prompt = [HumanMessage(content=prompt)]
  27. response = llm.generate([prompt])
  28. answer = response.generations[0][0].text
  29. return answer.strip()
  30. @classmethod
  31. def generate_conversation_summary(cls, tenant_id: str, messages):
  32. max_tokens = 200
  33. prompt = CONVERSATION_SUMMARY_PROMPT
  34. prompt_with_empty_context = prompt.format(context='')
  35. prompt_tokens = TokenCalculator.get_num_tokens(generate_base_model, prompt_with_empty_context)
  36. rest_tokens = llm_constant.max_context_token_length[generate_base_model] - prompt_tokens - max_tokens
  37. context = ''
  38. for message in messages:
  39. if not message.answer:
  40. continue
  41. message_qa_text = "Human:" + message.query + "\nAI:" + message.answer + "\n"
  42. if rest_tokens - TokenCalculator.get_num_tokens(generate_base_model, context + message_qa_text) > 0:
  43. context += message_qa_text
  44. prompt = prompt.format(context=context)
  45. llm: StreamableOpenAI = LLMBuilder.to_llm(
  46. tenant_id=tenant_id,
  47. model_name=generate_base_model,
  48. max_tokens=max_tokens
  49. )
  50. if isinstance(llm, BaseChatModel):
  51. prompt = [HumanMessage(content=prompt)]
  52. response = llm.generate([prompt])
  53. answer = response.generations[0][0].text
  54. return answer.strip()
  55. @classmethod
  56. def generate_introduction(cls, tenant_id: str, pre_prompt: str):
  57. prompt = INTRODUCTION_GENERATE_PROMPT
  58. prompt = prompt.format(prompt=pre_prompt)
  59. llm: StreamableOpenAI = LLMBuilder.to_llm(
  60. tenant_id=tenant_id,
  61. model_name=generate_base_model,
  62. )
  63. if isinstance(llm, BaseChatModel):
  64. prompt = [HumanMessage(content=prompt)]
  65. response = llm.generate([prompt])
  66. answer = response.generations[0][0].text
  67. return answer.strip()
  68. @classmethod
  69. def generate_suggested_questions_after_answer(cls, tenant_id: str, histories: str):
  70. output_parser = SuggestedQuestionsAfterAnswerOutputParser()
  71. format_instructions = output_parser.get_format_instructions()
  72. prompt = JinjaPromptTemplate(
  73. template="{{histories}}\n{{format_instructions}}\nquestions:\n",
  74. input_variables=["histories"],
  75. partial_variables={"format_instructions": format_instructions}
  76. )
  77. _input = prompt.format_prompt(histories=histories)
  78. llm: StreamableOpenAI = LLMBuilder.to_llm(
  79. tenant_id=tenant_id,
  80. model_name=generate_base_model,
  81. temperature=0,
  82. max_tokens=256
  83. )
  84. if isinstance(llm, BaseChatModel):
  85. query = [HumanMessage(content=_input.to_string())]
  86. else:
  87. query = _input.to_string()
  88. try:
  89. output = llm(query)
  90. questions = output_parser.parse(output)
  91. except Exception:
  92. logging.exception("Error generating suggested questions after answer")
  93. questions = []
  94. return questions
  95. @classmethod
  96. def generate_rule_config(cls, tenant_id: str, audiences: str, hoping_to_solve: str) -> dict:
  97. output_parser = RuleConfigGeneratorOutputParser()
  98. prompt = OutLinePromptTemplate(
  99. template=output_parser.get_format_instructions(),
  100. input_variables=["audiences", "hoping_to_solve"],
  101. partial_variables={
  102. "variable": '{variable}',
  103. "lanA": '{lanA}',
  104. "lanB": '{lanB}',
  105. "topic": '{topic}'
  106. },
  107. validate_template=False
  108. )
  109. _input = prompt.format_prompt(audiences=audiences, hoping_to_solve=hoping_to_solve)
  110. llm: StreamableOpenAI = LLMBuilder.to_llm(
  111. tenant_id=tenant_id,
  112. model_name=generate_base_model,
  113. temperature=0,
  114. max_tokens=512
  115. )
  116. if isinstance(llm, BaseChatModel):
  117. query = [HumanMessage(content=_input.to_string())]
  118. else:
  119. query = _input.to_string()
  120. try:
  121. output = llm(query)
  122. rule_config = output_parser.parse(output)
  123. except OutputParserException:
  124. raise ValueError('Please give a valid input for intended audience or hoping to solve problems.')
  125. except Exception:
  126. logging.exception("Error generating prompt")
  127. rule_config = {
  128. "prompt": "",
  129. "variables": [],
  130. "opening_statement": ""
  131. }
  132. return rule_config