conversation_message_task.py 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398
  1. import decimal
  2. import json
  3. from typing import Optional, Union
  4. from core.callback_handler.entity.agent_loop import AgentLoop
  5. from core.callback_handler.entity.dataset_query import DatasetQueryObj
  6. from core.callback_handler.entity.llm_message import LLMMessage
  7. from core.callback_handler.entity.chain_result import ChainResult
  8. from core.constant import llm_constant
  9. from core.llm.llm_builder import LLMBuilder
  10. from core.llm.provider.llm_provider_service import LLMProviderService
  11. from core.prompt.prompt_builder import PromptBuilder
  12. from core.prompt.prompt_template import JinjaPromptTemplate
  13. from events.message_event import message_was_created
  14. from extensions.ext_database import db
  15. from extensions.ext_redis import redis_client
  16. from models.dataset import DatasetQuery
  17. from models.model import AppModelConfig, Conversation, Account, Message, EndUser, App, MessageAgentThought, MessageChain
  18. from models.provider import ProviderType, Provider
  19. class ConversationMessageTask:
  20. def __init__(self, task_id: str, app: App, app_model_config: AppModelConfig, user: Account,
  21. inputs: dict, query: str, streaming: bool,
  22. conversation: Optional[Conversation] = None, is_override: bool = False):
  23. self.task_id = task_id
  24. self.app = app
  25. self.tenant_id = app.tenant_id
  26. self.app_model_config = app_model_config
  27. self.is_override = is_override
  28. self.user = user
  29. self.inputs = inputs
  30. self.query = query
  31. self.streaming = streaming
  32. self.conversation = conversation
  33. self.is_new_conversation = False
  34. self.message = None
  35. self.model_dict = self.app_model_config.model_dict
  36. self.model_name = self.model_dict.get('name')
  37. self.mode = app.mode
  38. self.init()
  39. self._pub_handler = PubHandler(
  40. user=self.user,
  41. task_id=self.task_id,
  42. message=self.message,
  43. conversation=self.conversation,
  44. chain_pub=False, # disabled currently
  45. agent_thought_pub=False # disabled currently
  46. )
  47. def init(self):
  48. provider_name = LLMBuilder.get_default_provider(self.app.tenant_id)
  49. self.model_dict['provider'] = provider_name
  50. override_model_configs = None
  51. if self.is_override:
  52. override_model_configs = {
  53. "model": self.app_model_config.model_dict,
  54. "pre_prompt": self.app_model_config.pre_prompt,
  55. "agent_mode": self.app_model_config.agent_mode_dict,
  56. "opening_statement": self.app_model_config.opening_statement,
  57. "suggested_questions": self.app_model_config.suggested_questions_list,
  58. "suggested_questions_after_answer": self.app_model_config.suggested_questions_after_answer_dict,
  59. "more_like_this": self.app_model_config.more_like_this_dict,
  60. "user_input_form": self.app_model_config.user_input_form_list,
  61. }
  62. introduction = ''
  63. system_instruction = ''
  64. system_instruction_tokens = 0
  65. if self.mode == 'chat':
  66. introduction = self.app_model_config.opening_statement
  67. if introduction:
  68. prompt_template = JinjaPromptTemplate.from_template(template=introduction)
  69. prompt_inputs = {k: self.inputs[k] for k in prompt_template.input_variables if k in self.inputs}
  70. try:
  71. introduction = prompt_template.format(**prompt_inputs)
  72. except KeyError:
  73. pass
  74. if self.app_model_config.pre_prompt:
  75. system_message = PromptBuilder.to_system_message(self.app_model_config.pre_prompt, self.inputs)
  76. system_instruction = system_message.content
  77. llm = LLMBuilder.to_llm(self.tenant_id, self.model_name)
  78. system_instruction_tokens = llm.get_messages_tokens([system_message])
  79. if not self.conversation:
  80. self.is_new_conversation = True
  81. self.conversation = Conversation(
  82. app_id=self.app_model_config.app_id,
  83. app_model_config_id=self.app_model_config.id,
  84. model_provider=self.model_dict.get('provider'),
  85. model_id=self.model_name,
  86. override_model_configs=json.dumps(override_model_configs) if override_model_configs else None,
  87. mode=self.mode,
  88. name='',
  89. inputs=self.inputs,
  90. introduction=introduction,
  91. system_instruction=system_instruction,
  92. system_instruction_tokens=system_instruction_tokens,
  93. status='normal',
  94. from_source=('console' if isinstance(self.user, Account) else 'api'),
  95. from_end_user_id=(self.user.id if isinstance(self.user, EndUser) else None),
  96. from_account_id=(self.user.id if isinstance(self.user, Account) else None),
  97. )
  98. db.session.add(self.conversation)
  99. db.session.flush()
  100. self.message = Message(
  101. app_id=self.app_model_config.app_id,
  102. model_provider=self.model_dict.get('provider'),
  103. model_id=self.model_name,
  104. override_model_configs=json.dumps(override_model_configs) if override_model_configs else None,
  105. conversation_id=self.conversation.id,
  106. inputs=self.inputs,
  107. query=self.query,
  108. message="",
  109. message_tokens=0,
  110. message_unit_price=0,
  111. answer="",
  112. answer_tokens=0,
  113. answer_unit_price=0,
  114. provider_response_latency=0,
  115. total_price=0,
  116. currency=llm_constant.model_currency,
  117. from_source=('console' if isinstance(self.user, Account) else 'api'),
  118. from_end_user_id=(self.user.id if isinstance(self.user, EndUser) else None),
  119. from_account_id=(self.user.id if isinstance(self.user, Account) else None),
  120. agent_based=self.app_model_config.agent_mode_dict.get('enabled'),
  121. )
  122. db.session.add(self.message)
  123. db.session.flush()
  124. def append_message_text(self, text: str):
  125. self._pub_handler.pub_text(text)
  126. def save_message(self, llm_message: LLMMessage, by_stopped: bool = False):
  127. model_name = self.app_model_config.model_dict.get('name')
  128. message_tokens = llm_message.prompt_tokens
  129. answer_tokens = llm_message.completion_tokens
  130. message_unit_price = llm_constant.model_prices[model_name]['prompt']
  131. answer_unit_price = llm_constant.model_prices[model_name]['completion']
  132. total_price = self.calc_total_price(message_tokens, message_unit_price, answer_tokens, answer_unit_price)
  133. self.message.message = llm_message.prompt
  134. self.message.message_tokens = message_tokens
  135. self.message.message_unit_price = message_unit_price
  136. self.message.answer = llm_message.completion.strip() if llm_message.completion else ''
  137. self.message.answer_tokens = answer_tokens
  138. self.message.answer_unit_price = answer_unit_price
  139. self.message.provider_response_latency = llm_message.latency
  140. self.message.total_price = total_price
  141. self.update_provider_quota()
  142. db.session.commit()
  143. message_was_created.send(
  144. self.message,
  145. conversation=self.conversation,
  146. is_first_message=self.is_new_conversation
  147. )
  148. if not by_stopped:
  149. self.end()
  150. def update_provider_quota(self):
  151. llm_provider_service = LLMProviderService(
  152. tenant_id=self.app.tenant_id,
  153. provider_name=self.message.model_provider,
  154. )
  155. provider = llm_provider_service.get_provider_db_record()
  156. if provider and provider.provider_type == ProviderType.SYSTEM.value:
  157. db.session.query(Provider).filter(
  158. Provider.tenant_id == self.app.tenant_id,
  159. Provider.quota_limit > Provider.quota_used
  160. ).update({'quota_used': Provider.quota_used + 1})
  161. def init_chain(self, chain_result: ChainResult):
  162. message_chain = MessageChain(
  163. message_id=self.message.id,
  164. type=chain_result.type,
  165. input=json.dumps(chain_result.prompt),
  166. output=''
  167. )
  168. db.session.add(message_chain)
  169. db.session.flush()
  170. return message_chain
  171. def on_chain_end(self, message_chain: MessageChain, chain_result: ChainResult):
  172. message_chain.output = json.dumps(chain_result.completion)
  173. self._pub_handler.pub_chain(message_chain)
  174. def on_agent_end(self, message_chain: MessageChain, agent_model_name: str,
  175. agent_loop: AgentLoop):
  176. agent_message_unit_price = llm_constant.model_prices[agent_model_name]['prompt']
  177. agent_answer_unit_price = llm_constant.model_prices[agent_model_name]['completion']
  178. loop_message_tokens = agent_loop.prompt_tokens
  179. loop_answer_tokens = agent_loop.completion_tokens
  180. loop_total_price = self.calc_total_price(
  181. loop_message_tokens,
  182. agent_message_unit_price,
  183. loop_answer_tokens,
  184. agent_answer_unit_price
  185. )
  186. message_agent_loop = MessageAgentThought(
  187. message_id=self.message.id,
  188. message_chain_id=message_chain.id,
  189. position=agent_loop.position,
  190. thought=agent_loop.thought,
  191. tool=agent_loop.tool_name,
  192. tool_input=agent_loop.tool_input,
  193. observation=agent_loop.tool_output,
  194. tool_process_data='', # currently not support
  195. message=agent_loop.prompt,
  196. message_token=loop_message_tokens,
  197. message_unit_price=agent_message_unit_price,
  198. answer=agent_loop.completion,
  199. answer_token=loop_answer_tokens,
  200. answer_unit_price=agent_answer_unit_price,
  201. latency=agent_loop.latency,
  202. tokens=agent_loop.prompt_tokens + agent_loop.completion_tokens,
  203. total_price=loop_total_price,
  204. currency=llm_constant.model_currency,
  205. created_by_role=('account' if isinstance(self.user, Account) else 'end_user'),
  206. created_by=self.user.id
  207. )
  208. db.session.add(message_agent_loop)
  209. db.session.flush()
  210. self._pub_handler.pub_agent_thought(message_agent_loop)
  211. def on_dataset_query_end(self, dataset_query_obj: DatasetQueryObj):
  212. dataset_query = DatasetQuery(
  213. dataset_id=dataset_query_obj.dataset_id,
  214. content=dataset_query_obj.query,
  215. source='app',
  216. source_app_id=self.app.id,
  217. created_by_role=('account' if isinstance(self.user, Account) else 'end_user'),
  218. created_by=self.user.id
  219. )
  220. db.session.add(dataset_query)
  221. def calc_total_price(self, message_tokens, message_unit_price, answer_tokens, answer_unit_price):
  222. message_tokens_per_1k = (decimal.Decimal(message_tokens) / 1000).quantize(decimal.Decimal('0.001'),
  223. rounding=decimal.ROUND_HALF_UP)
  224. answer_tokens_per_1k = (decimal.Decimal(answer_tokens) / 1000).quantize(decimal.Decimal('0.001'),
  225. rounding=decimal.ROUND_HALF_UP)
  226. total_price = message_tokens_per_1k * message_unit_price + answer_tokens_per_1k * answer_unit_price
  227. return total_price.quantize(decimal.Decimal('0.0000001'), rounding=decimal.ROUND_HALF_UP)
  228. def end(self):
  229. self._pub_handler.pub_end()
  230. class PubHandler:
  231. def __init__(self, user: Union[Account | EndUser], task_id: str,
  232. message: Message, conversation: Conversation,
  233. chain_pub: bool = False, agent_thought_pub: bool = False):
  234. self._channel = PubHandler.generate_channel_name(user, task_id)
  235. self._stopped_cache_key = PubHandler.generate_stopped_cache_key(user, task_id)
  236. self._task_id = task_id
  237. self._message = message
  238. self._conversation = conversation
  239. self._chain_pub = chain_pub
  240. self._agent_thought_pub = agent_thought_pub
  241. @classmethod
  242. def generate_channel_name(cls, user: Union[Account | EndUser], task_id: str):
  243. if not user:
  244. raise ValueError("user is required")
  245. user_str = 'account-' + str(user.id) if isinstance(user, Account) else 'end-user-' + str(user.id)
  246. return "generate_result:{}-{}".format(user_str, task_id)
  247. @classmethod
  248. def generate_stopped_cache_key(cls, user: Union[Account | EndUser], task_id: str):
  249. user_str = 'account-' + str(user.id) if isinstance(user, Account) else 'end-user-' + str(user.id)
  250. return "generate_result_stopped:{}-{}".format(user_str, task_id)
  251. def pub_text(self, text: str):
  252. content = {
  253. 'event': 'message',
  254. 'data': {
  255. 'task_id': self._task_id,
  256. 'message_id': str(self._message.id),
  257. 'text': text,
  258. 'mode': self._conversation.mode,
  259. 'conversation_id': str(self._conversation.id)
  260. }
  261. }
  262. redis_client.publish(self._channel, json.dumps(content))
  263. if self._is_stopped():
  264. self.pub_end()
  265. raise ConversationTaskStoppedException()
  266. def pub_chain(self, message_chain: MessageChain):
  267. if self._chain_pub:
  268. content = {
  269. 'event': 'chain',
  270. 'data': {
  271. 'task_id': self._task_id,
  272. 'message_id': self._message.id,
  273. 'chain_id': message_chain.id,
  274. 'type': message_chain.type,
  275. 'input': json.loads(message_chain.input),
  276. 'output': json.loads(message_chain.output),
  277. 'mode': self._conversation.mode,
  278. 'conversation_id': self._conversation.id
  279. }
  280. }
  281. redis_client.publish(self._channel, json.dumps(content))
  282. if self._is_stopped():
  283. self.pub_end()
  284. raise ConversationTaskStoppedException()
  285. def pub_agent_thought(self, message_agent_thought: MessageAgentThought):
  286. if self._agent_thought_pub:
  287. content = {
  288. 'event': 'agent_thought',
  289. 'data': {
  290. 'task_id': self._task_id,
  291. 'message_id': self._message.id,
  292. 'chain_id': message_agent_thought.message_chain_id,
  293. 'agent_thought_id': message_agent_thought.id,
  294. 'position': message_agent_thought.position,
  295. 'thought': message_agent_thought.thought,
  296. 'tool': message_agent_thought.tool,
  297. 'tool_input': message_agent_thought.tool_input,
  298. 'observation': message_agent_thought.observation,
  299. 'answer': message_agent_thought.answer,
  300. 'mode': self._conversation.mode,
  301. 'conversation_id': self._conversation.id
  302. }
  303. }
  304. redis_client.publish(self._channel, json.dumps(content))
  305. if self._is_stopped():
  306. self.pub_end()
  307. raise ConversationTaskStoppedException()
  308. def pub_end(self):
  309. content = {
  310. 'event': 'end',
  311. }
  312. redis_client.publish(self._channel, json.dumps(content))
  313. @classmethod
  314. def pub_error(cls, user: Union[Account | EndUser], task_id: str, e):
  315. content = {
  316. 'error': type(e).__name__,
  317. 'description': e.description if getattr(e, 'description', None) is not None else str(e)
  318. }
  319. channel = cls.generate_channel_name(user, task_id)
  320. redis_client.publish(channel, json.dumps(content))
  321. def _is_stopped(self):
  322. return redis_client.get(self._stopped_cache_key) is not None
  323. @classmethod
  324. def stop(cls, user: Union[Account | EndUser], task_id: str):
  325. stopped_cache_key = cls.generate_stopped_cache_key(user, task_id)
  326. redis_client.setex(stopped_cache_key, 600, 1)
  327. class ConversationTaskStoppedException(Exception):
  328. pass