Shoya SHIRAKI c57b3931d5 refactor(api): switch to dify_config in controllers/console (#6485) před 9 měsíci
..
configs 2ba05b041f refactor(myscale):Set the default value of the myscale vector db in DifyConfig. (#6441) před 10 měsíci
constants 6ef401a9f0 feat:add tts-streaming config and future (#5492) před 10 měsíci
controllers c57b3931d5 refactor(api): switch to dify_config in controllers/console (#6485) před 9 měsíci
core 49ef9ef225 feat(tool): getimg.ai integration (#6260) před 10 měsíci
docker 5236cb1888 fix: kill signal is not passed to the main process (#6159) před 10 měsíci
events d320d1468d Feat/delete file when clean document (#5882) před 10 měsíci
extensions 7c397f5722 update celery beat scheduler time to env (#6352) před 10 měsíci
fields 9622fbb62f feat: app rate limit (#5844) před 10 měsíci
libs 9622fbb62f feat: app rate limit (#5844) před 10 měsíci
migrations 1e0e573165 update clean embedding cache query logic (#6483) před 10 měsíci
models 1e0e573165 update clean embedding cache query logic (#6483) před 10 měsíci
schedule f73a3a58ae update delete embeddings by id (#6489) před 10 měsíci
services 57729823a0 fix wrong method using (#6459) před 10 měsíci
tasks 443e96777b update empty document caused delete exist collection (#6392) před 10 měsíci
templates 00b4cc3cd4 feat: implement forgot password feature (#5534) před 10 měsíci
tests 4a026fa352 Enhancement: add model provider - Amazon Sagemaker (#6255) před 10 měsíci
.dockerignore 27f0ae8416 build: support Poetry for depencencies tool in api's Dockerfile (#5105) před 10 měsíci
.env.example 7c397f5722 update celery beat scheduler time to env (#6352) před 10 měsíci
Dockerfile 9b7c74a5d9 chore: skip pip upgrade preparation in api dockerfile (#5999) před 10 měsíci
README.md 2d6624cf9e typo: Update README.md (#5987) před 10 měsíci
app.py d7f75d17cc Chore/remove-unused-code (#5917) před 10 měsíci
commands.py 7c70eb87bc feat: support AnalyticDB vector store (#5586) před 10 měsíci
poetry.lock 4e2fba404d WebscraperTool bypass cloudflare site by cloudscraper (#6337) před 10 měsíci
poetry.toml f62f71a81a build: initial support for poetry build tool (#4513) před 11 měsíci
pyproject.toml 4e2fba404d WebscraperTool bypass cloudflare site by cloudscraper (#6337) před 10 měsíci

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   docker compose -f docker-compose.middleware.yaml -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.

```bash for Linux sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env


   ```bash for Mac
   secret_key=$(openssl rand -base64 42)
   sed -i '' "/^SECRET_KEY=/c\\
   SECRET_KEY=${secret_key}" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies
   poetry env use 3.10
   poetry install

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000...
  3. If you need to debug local async processing, please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   cd ../
   poetry run -C api bash dev/pytest/pytest_all_tests.sh