dataset_service.py 41 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941
  1. import json
  2. import logging
  3. import datetime
  4. import time
  5. import random
  6. import uuid
  7. from typing import Optional, List
  8. from flask import current_app
  9. from sqlalchemy import func
  10. from core.llm.token_calculator import TokenCalculator
  11. from events.event_handlers.document_index_event import document_index_created
  12. from extensions.ext_redis import redis_client
  13. from flask_login import current_user
  14. from events.dataset_event import dataset_was_deleted
  15. from events.document_event import document_was_deleted
  16. from extensions.ext_database import db
  17. from libs import helper
  18. from models.account import Account
  19. from models.dataset import Dataset, Document, DatasetQuery, DatasetProcessRule, AppDatasetJoin, DocumentSegment
  20. from models.model import UploadFile
  21. from models.source import DataSourceBinding
  22. from services.errors.account import NoPermissionError
  23. from services.errors.dataset import DatasetNameDuplicateError
  24. from services.errors.document import DocumentIndexingError
  25. from services.errors.file import FileNotExistsError
  26. from tasks.clean_notion_document_task import clean_notion_document_task
  27. from tasks.deal_dataset_vector_index_task import deal_dataset_vector_index_task
  28. from tasks.document_indexing_task import document_indexing_task
  29. from tasks.document_indexing_update_task import document_indexing_update_task
  30. from tasks.create_segment_to_index_task import create_segment_to_index_task
  31. from tasks.update_segment_index_task import update_segment_index_task
  32. from tasks.update_segment_keyword_index_task\
  33. import update_segment_keyword_index_task
  34. class DatasetService:
  35. @staticmethod
  36. def get_datasets(page, per_page, provider="vendor", tenant_id=None, user=None):
  37. if user:
  38. permission_filter = db.or_(Dataset.created_by == user.id,
  39. Dataset.permission == 'all_team_members')
  40. else:
  41. permission_filter = Dataset.permission == 'all_team_members'
  42. datasets = Dataset.query.filter(
  43. db.and_(Dataset.provider == provider, Dataset.tenant_id == tenant_id, permission_filter)) \
  44. .order_by(Dataset.created_at.desc()) \
  45. .paginate(
  46. page=page,
  47. per_page=per_page,
  48. max_per_page=100,
  49. error_out=False
  50. )
  51. return datasets.items, datasets.total
  52. @staticmethod
  53. def get_process_rules(dataset_id):
  54. # get the latest process rule
  55. dataset_process_rule = db.session.query(DatasetProcessRule). \
  56. filter(DatasetProcessRule.dataset_id == dataset_id). \
  57. order_by(DatasetProcessRule.created_at.desc()). \
  58. limit(1). \
  59. one_or_none()
  60. if dataset_process_rule:
  61. mode = dataset_process_rule.mode
  62. rules = dataset_process_rule.rules_dict
  63. else:
  64. mode = DocumentService.DEFAULT_RULES['mode']
  65. rules = DocumentService.DEFAULT_RULES['rules']
  66. return {
  67. 'mode': mode,
  68. 'rules': rules
  69. }
  70. @staticmethod
  71. def get_datasets_by_ids(ids, tenant_id):
  72. datasets = Dataset.query.filter(Dataset.id.in_(ids),
  73. Dataset.tenant_id == tenant_id).paginate(
  74. page=1, per_page=len(ids), max_per_page=len(ids), error_out=False)
  75. return datasets.items, datasets.total
  76. @staticmethod
  77. def create_empty_dataset(tenant_id: str, name: str, indexing_technique: Optional[str], account: Account):
  78. # check if dataset name already exists
  79. if Dataset.query.filter_by(name=name, tenant_id=tenant_id).first():
  80. raise DatasetNameDuplicateError(
  81. f'Dataset with name {name} already exists.')
  82. dataset = Dataset(name=name, indexing_technique=indexing_technique)
  83. # dataset = Dataset(name=name, provider=provider, config=config)
  84. dataset.created_by = account.id
  85. dataset.updated_by = account.id
  86. dataset.tenant_id = tenant_id
  87. db.session.add(dataset)
  88. db.session.commit()
  89. return dataset
  90. @staticmethod
  91. def get_dataset(dataset_id):
  92. dataset = Dataset.query.filter_by(
  93. id=dataset_id
  94. ).first()
  95. if dataset is None:
  96. return None
  97. else:
  98. return dataset
  99. @staticmethod
  100. def update_dataset(dataset_id, data, user):
  101. dataset = DatasetService.get_dataset(dataset_id)
  102. DatasetService.check_dataset_permission(dataset, user)
  103. if dataset.indexing_technique != data['indexing_technique']:
  104. # if update indexing_technique
  105. if data['indexing_technique'] == 'economy':
  106. deal_dataset_vector_index_task.delay(dataset_id, 'remove')
  107. elif data['indexing_technique'] == 'high_quality':
  108. deal_dataset_vector_index_task.delay(dataset_id, 'add')
  109. filtered_data = {k: v for k, v in data.items() if v is not None or k == 'description'}
  110. filtered_data['updated_by'] = user.id
  111. filtered_data['updated_at'] = datetime.datetime.now()
  112. dataset.query.filter_by(id=dataset_id).update(filtered_data)
  113. db.session.commit()
  114. return dataset
  115. @staticmethod
  116. def delete_dataset(dataset_id, user):
  117. # todo: cannot delete dataset if it is being processed
  118. dataset = DatasetService.get_dataset(dataset_id)
  119. if dataset is None:
  120. return False
  121. DatasetService.check_dataset_permission(dataset, user)
  122. dataset_was_deleted.send(dataset)
  123. db.session.delete(dataset)
  124. db.session.commit()
  125. return True
  126. @staticmethod
  127. def check_dataset_permission(dataset, user):
  128. if dataset.tenant_id != user.current_tenant_id:
  129. logging.debug(
  130. f'User {user.id} does not have permission to access dataset {dataset.id}')
  131. raise NoPermissionError(
  132. 'You do not have permission to access this dataset.')
  133. if dataset.permission == 'only_me' and dataset.created_by != user.id:
  134. logging.debug(
  135. f'User {user.id} does not have permission to access dataset {dataset.id}')
  136. raise NoPermissionError(
  137. 'You do not have permission to access this dataset.')
  138. @staticmethod
  139. def get_dataset_queries(dataset_id: str, page: int, per_page: int):
  140. dataset_queries = DatasetQuery.query.filter_by(dataset_id=dataset_id) \
  141. .order_by(db.desc(DatasetQuery.created_at)) \
  142. .paginate(
  143. page=page, per_page=per_page, max_per_page=100, error_out=False
  144. )
  145. return dataset_queries.items, dataset_queries.total
  146. @staticmethod
  147. def get_related_apps(dataset_id: str):
  148. return AppDatasetJoin.query.filter(AppDatasetJoin.dataset_id == dataset_id) \
  149. .order_by(db.desc(AppDatasetJoin.created_at)).all()
  150. class DocumentService:
  151. DEFAULT_RULES = {
  152. 'mode': 'custom',
  153. 'rules': {
  154. 'pre_processing_rules': [
  155. {'id': 'remove_extra_spaces', 'enabled': True},
  156. {'id': 'remove_urls_emails', 'enabled': False}
  157. ],
  158. 'segmentation': {
  159. 'delimiter': '\n',
  160. 'max_tokens': 500
  161. }
  162. }
  163. }
  164. DOCUMENT_METADATA_SCHEMA = {
  165. "book": {
  166. "title": str,
  167. "language": str,
  168. "author": str,
  169. "publisher": str,
  170. "publication_date": str,
  171. "isbn": str,
  172. "category": str,
  173. },
  174. "web_page": {
  175. "title": str,
  176. "url": str,
  177. "language": str,
  178. "publish_date": str,
  179. "author/publisher": str,
  180. "topic/keywords": str,
  181. "description": str,
  182. },
  183. "paper": {
  184. "title": str,
  185. "language": str,
  186. "author": str,
  187. "publish_date": str,
  188. "journal/conference_name": str,
  189. "volume/issue/page_numbers": str,
  190. "doi": str,
  191. "topic/keywords": str,
  192. "abstract": str,
  193. },
  194. "social_media_post": {
  195. "platform": str,
  196. "author/username": str,
  197. "publish_date": str,
  198. "post_url": str,
  199. "topic/tags": str,
  200. },
  201. "wikipedia_entry": {
  202. "title": str,
  203. "language": str,
  204. "web_page_url": str,
  205. "last_edit_date": str,
  206. "editor/contributor": str,
  207. "summary/introduction": str,
  208. },
  209. "personal_document": {
  210. "title": str,
  211. "author": str,
  212. "creation_date": str,
  213. "last_modified_date": str,
  214. "document_type": str,
  215. "tags/category": str,
  216. },
  217. "business_document": {
  218. "title": str,
  219. "author": str,
  220. "creation_date": str,
  221. "last_modified_date": str,
  222. "document_type": str,
  223. "department/team": str,
  224. },
  225. "im_chat_log": {
  226. "chat_platform": str,
  227. "chat_participants/group_name": str,
  228. "start_date": str,
  229. "end_date": str,
  230. "summary": str,
  231. },
  232. "synced_from_notion": {
  233. "title": str,
  234. "language": str,
  235. "author/creator": str,
  236. "creation_date": str,
  237. "last_modified_date": str,
  238. "notion_page_link": str,
  239. "category/tags": str,
  240. "description": str,
  241. },
  242. "synced_from_github": {
  243. "repository_name": str,
  244. "repository_description": str,
  245. "repository_owner/organization": str,
  246. "code_filename": str,
  247. "code_file_path": str,
  248. "programming_language": str,
  249. "github_link": str,
  250. "open_source_license": str,
  251. "commit_date": str,
  252. "commit_author": str
  253. }
  254. }
  255. @staticmethod
  256. def get_document(dataset_id: str, document_id: str) -> Optional[Document]:
  257. document = db.session.query(Document).filter(
  258. Document.id == document_id,
  259. Document.dataset_id == dataset_id
  260. ).first()
  261. return document
  262. @staticmethod
  263. def get_document_by_id(document_id: str) -> Optional[Document]:
  264. document = db.session.query(Document).filter(
  265. Document.id == document_id
  266. ).first()
  267. return document
  268. @staticmethod
  269. def get_document_by_dataset_id(dataset_id: str) -> List[Document]:
  270. documents = db.session.query(Document).filter(
  271. Document.dataset_id == dataset_id,
  272. Document.enabled == True
  273. ).all()
  274. return documents
  275. @staticmethod
  276. def get_batch_documents(dataset_id: str, batch: str) -> List[Document]:
  277. documents = db.session.query(Document).filter(
  278. Document.batch == batch,
  279. Document.dataset_id == dataset_id,
  280. Document.tenant_id == current_user.current_tenant_id
  281. ).all()
  282. return documents
  283. @staticmethod
  284. def get_document_file_detail(file_id: str):
  285. file_detail = db.session.query(UploadFile). \
  286. filter(UploadFile.id == file_id). \
  287. one_or_none()
  288. return file_detail
  289. @staticmethod
  290. def check_archived(document):
  291. if document.archived:
  292. return True
  293. else:
  294. return False
  295. @staticmethod
  296. def delete_document(document):
  297. if document.indexing_status in ["parsing", "cleaning", "splitting", "indexing"]:
  298. raise DocumentIndexingError()
  299. # trigger document_was_deleted signal
  300. document_was_deleted.send(document.id, dataset_id=document.dataset_id)
  301. db.session.delete(document)
  302. db.session.commit()
  303. @staticmethod
  304. def pause_document(document):
  305. if document.indexing_status not in ["waiting", "parsing", "cleaning", "splitting", "indexing"]:
  306. raise DocumentIndexingError()
  307. # update document to be paused
  308. document.is_paused = True
  309. document.paused_by = current_user.id
  310. document.paused_at = datetime.datetime.utcnow()
  311. db.session.add(document)
  312. db.session.commit()
  313. # set document paused flag
  314. indexing_cache_key = 'document_{}_is_paused'.format(document.id)
  315. redis_client.setnx(indexing_cache_key, "True")
  316. @staticmethod
  317. def recover_document(document):
  318. if not document.is_paused:
  319. raise DocumentIndexingError()
  320. # update document to be recover
  321. document.is_paused = False
  322. document.paused_by = current_user.id
  323. document.paused_at = time.time()
  324. db.session.add(document)
  325. db.session.commit()
  326. # delete paused flag
  327. indexing_cache_key = 'document_{}_is_paused'.format(document.id)
  328. redis_client.delete(indexing_cache_key)
  329. # trigger async task
  330. document_indexing_task.delay(document.dataset_id, document.id)
  331. @staticmethod
  332. def get_documents_position(dataset_id):
  333. document = Document.query.filter_by(dataset_id=dataset_id).order_by(Document.position.desc()).first()
  334. if document:
  335. return document.position + 1
  336. else:
  337. return 1
  338. @staticmethod
  339. def save_document_with_dataset_id(dataset: Dataset, document_data: dict,
  340. account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
  341. created_from: str = 'web'):
  342. # check document limit
  343. if current_app.config['EDITION'] == 'CLOUD':
  344. documents_count = DocumentService.get_tenant_documents_count()
  345. tenant_document_count = int(current_app.config['TENANT_DOCUMENT_COUNT'])
  346. if documents_count > tenant_document_count:
  347. raise ValueError(f"over document limit {tenant_document_count}.")
  348. # if dataset is empty, update dataset data_source_type
  349. if not dataset.data_source_type:
  350. dataset.data_source_type = document_data["data_source"]["type"]
  351. db.session.commit()
  352. if not dataset.indexing_technique:
  353. if 'indexing_technique' not in document_data \
  354. or document_data['indexing_technique'] not in Dataset.INDEXING_TECHNIQUE_LIST:
  355. raise ValueError("Indexing technique is required")
  356. dataset.indexing_technique = document_data["indexing_technique"]
  357. documents = []
  358. batch = time.strftime('%Y%m%d%H%M%S') + str(random.randint(100000, 999999))
  359. if 'original_document_id' in document_data and document_data["original_document_id"]:
  360. document = DocumentService.update_document_with_dataset_id(dataset, document_data, account)
  361. documents.append(document)
  362. else:
  363. # save process rule
  364. if not dataset_process_rule:
  365. process_rule = document_data["process_rule"]
  366. if process_rule["mode"] == "custom":
  367. dataset_process_rule = DatasetProcessRule(
  368. dataset_id=dataset.id,
  369. mode=process_rule["mode"],
  370. rules=json.dumps(process_rule["rules"]),
  371. created_by=account.id
  372. )
  373. elif process_rule["mode"] == "automatic":
  374. dataset_process_rule = DatasetProcessRule(
  375. dataset_id=dataset.id,
  376. mode=process_rule["mode"],
  377. rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
  378. created_by=account.id
  379. )
  380. db.session.add(dataset_process_rule)
  381. db.session.commit()
  382. position = DocumentService.get_documents_position(dataset.id)
  383. document_ids = []
  384. if document_data["data_source"]["type"] == "upload_file":
  385. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  386. for file_id in upload_file_list:
  387. file = db.session.query(UploadFile).filter(
  388. UploadFile.tenant_id == dataset.tenant_id,
  389. UploadFile.id == file_id
  390. ).first()
  391. # raise error if file not found
  392. if not file:
  393. raise FileNotExistsError()
  394. file_name = file.name
  395. data_source_info = {
  396. "upload_file_id": file_id,
  397. }
  398. document = DocumentService.save_document(dataset, dataset_process_rule.id,
  399. document_data["data_source"]["type"],
  400. document_data["doc_form"],
  401. data_source_info, created_from, position,
  402. account, file_name, batch)
  403. db.session.add(document)
  404. db.session.flush()
  405. document_ids.append(document.id)
  406. documents.append(document)
  407. position += 1
  408. elif document_data["data_source"]["type"] == "notion_import":
  409. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  410. exist_page_ids = []
  411. exist_document = dict()
  412. documents = Document.query.filter_by(
  413. dataset_id=dataset.id,
  414. tenant_id=current_user.current_tenant_id,
  415. data_source_type='notion_import',
  416. enabled=True
  417. ).all()
  418. if documents:
  419. for document in documents:
  420. data_source_info = json.loads(document.data_source_info)
  421. exist_page_ids.append(data_source_info['notion_page_id'])
  422. exist_document[data_source_info['notion_page_id']] = document.id
  423. for notion_info in notion_info_list:
  424. workspace_id = notion_info['workspace_id']
  425. data_source_binding = DataSourceBinding.query.filter(
  426. db.and_(
  427. DataSourceBinding.tenant_id == current_user.current_tenant_id,
  428. DataSourceBinding.provider == 'notion',
  429. DataSourceBinding.disabled == False,
  430. DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
  431. )
  432. ).first()
  433. if not data_source_binding:
  434. raise ValueError('Data source binding not found.')
  435. for page in notion_info['pages']:
  436. if page['page_id'] not in exist_page_ids:
  437. data_source_info = {
  438. "notion_workspace_id": workspace_id,
  439. "notion_page_id": page['page_id'],
  440. "notion_page_icon": page['page_icon'],
  441. "type": page['type']
  442. }
  443. document = DocumentService.save_document(dataset, dataset_process_rule.id,
  444. document_data["data_source"]["type"],
  445. document_data["doc_form"],
  446. data_source_info, created_from, position,
  447. account, page['page_name'], batch)
  448. # if page['type'] == 'database':
  449. # document.splitting_completed_at = datetime.datetime.utcnow()
  450. # document.cleaning_completed_at = datetime.datetime.utcnow()
  451. # document.parsing_completed_at = datetime.datetime.utcnow()
  452. # document.completed_at = datetime.datetime.utcnow()
  453. # document.indexing_status = 'completed'
  454. # document.word_count = 0
  455. # document.tokens = 0
  456. # document.indexing_latency = 0
  457. db.session.add(document)
  458. db.session.flush()
  459. # if page['type'] != 'database':
  460. document_ids.append(document.id)
  461. documents.append(document)
  462. position += 1
  463. else:
  464. exist_document.pop(page['page_id'])
  465. # delete not selected documents
  466. if len(exist_document) > 0:
  467. clean_notion_document_task.delay(list(exist_document.values()), dataset.id)
  468. db.session.commit()
  469. # trigger async task
  470. #document_index_created.send(dataset.id, document_ids=document_ids)
  471. document_indexing_task.delay(dataset.id, document_ids)
  472. return documents, batch
  473. @staticmethod
  474. def save_document(dataset: Dataset, process_rule_id: str, data_source_type: str, document_form: str,
  475. data_source_info: dict, created_from: str, position: int, account: Account, name: str,
  476. batch: str):
  477. document = Document(
  478. tenant_id=dataset.tenant_id,
  479. dataset_id=dataset.id,
  480. position=position,
  481. data_source_type=data_source_type,
  482. data_source_info=json.dumps(data_source_info),
  483. dataset_process_rule_id=process_rule_id,
  484. batch=batch,
  485. name=name,
  486. created_from=created_from,
  487. created_by=account.id,
  488. doc_form=document_form
  489. )
  490. return document
  491. @staticmethod
  492. def get_tenant_documents_count():
  493. documents_count = Document.query.filter(Document.completed_at.isnot(None),
  494. Document.enabled == True,
  495. Document.archived == False,
  496. Document.tenant_id == current_user.current_tenant_id).count()
  497. return documents_count
  498. @staticmethod
  499. def update_document_with_dataset_id(dataset: Dataset, document_data: dict,
  500. account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
  501. created_from: str = 'web'):
  502. document = DocumentService.get_document(dataset.id, document_data["original_document_id"])
  503. if document.display_status != 'available':
  504. raise ValueError("Document is not available")
  505. # save process rule
  506. if 'process_rule' in document_data and document_data['process_rule']:
  507. process_rule = document_data["process_rule"]
  508. if process_rule["mode"] == "custom":
  509. dataset_process_rule = DatasetProcessRule(
  510. dataset_id=dataset.id,
  511. mode=process_rule["mode"],
  512. rules=json.dumps(process_rule["rules"]),
  513. created_by=account.id
  514. )
  515. elif process_rule["mode"] == "automatic":
  516. dataset_process_rule = DatasetProcessRule(
  517. dataset_id=dataset.id,
  518. mode=process_rule["mode"],
  519. rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
  520. created_by=account.id
  521. )
  522. db.session.add(dataset_process_rule)
  523. db.session.commit()
  524. document.dataset_process_rule_id = dataset_process_rule.id
  525. # update document data source
  526. if 'data_source' in document_data and document_data['data_source']:
  527. file_name = ''
  528. data_source_info = {}
  529. if document_data["data_source"]["type"] == "upload_file":
  530. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  531. for file_id in upload_file_list:
  532. file = db.session.query(UploadFile).filter(
  533. UploadFile.tenant_id == dataset.tenant_id,
  534. UploadFile.id == file_id
  535. ).first()
  536. # raise error if file not found
  537. if not file:
  538. raise FileNotExistsError()
  539. file_name = file.name
  540. data_source_info = {
  541. "upload_file_id": file_id,
  542. }
  543. elif document_data["data_source"]["type"] == "notion_import":
  544. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  545. for notion_info in notion_info_list:
  546. workspace_id = notion_info['workspace_id']
  547. data_source_binding = DataSourceBinding.query.filter(
  548. db.and_(
  549. DataSourceBinding.tenant_id == current_user.current_tenant_id,
  550. DataSourceBinding.provider == 'notion',
  551. DataSourceBinding.disabled == False,
  552. DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
  553. )
  554. ).first()
  555. if not data_source_binding:
  556. raise ValueError('Data source binding not found.')
  557. for page in notion_info['pages']:
  558. data_source_info = {
  559. "notion_workspace_id": workspace_id,
  560. "notion_page_id": page['page_id'],
  561. "notion_page_icon": page['page_icon'],
  562. "type": page['type']
  563. }
  564. document.data_source_type = document_data["data_source"]["type"]
  565. document.data_source_info = json.dumps(data_source_info)
  566. document.name = file_name
  567. # update document to be waiting
  568. document.indexing_status = 'waiting'
  569. document.completed_at = None
  570. document.processing_started_at = None
  571. document.parsing_completed_at = None
  572. document.cleaning_completed_at = None
  573. document.splitting_completed_at = None
  574. document.updated_at = datetime.datetime.utcnow()
  575. document.created_from = created_from
  576. document.doc_form = document_data['doc_form']
  577. db.session.add(document)
  578. db.session.commit()
  579. # update document segment
  580. update_params = {
  581. DocumentSegment.status: 're_segment'
  582. }
  583. DocumentSegment.query.filter_by(document_id=document.id).update(update_params)
  584. db.session.commit()
  585. # trigger async task
  586. document_indexing_update_task.delay(document.dataset_id, document.id)
  587. return document
  588. @staticmethod
  589. def save_document_without_dataset_id(tenant_id: str, document_data: dict, account: Account):
  590. # check document limit
  591. if current_app.config['EDITION'] == 'CLOUD':
  592. documents_count = DocumentService.get_tenant_documents_count()
  593. tenant_document_count = int(current_app.config['TENANT_DOCUMENT_COUNT'])
  594. if documents_count > tenant_document_count:
  595. raise ValueError(f"over document limit {tenant_document_count}.")
  596. # save dataset
  597. dataset = Dataset(
  598. tenant_id=tenant_id,
  599. name='',
  600. data_source_type=document_data["data_source"]["type"],
  601. indexing_technique=document_data["indexing_technique"],
  602. created_by=account.id
  603. )
  604. db.session.add(dataset)
  605. db.session.flush()
  606. documents, batch = DocumentService.save_document_with_dataset_id(dataset, document_data, account)
  607. cut_length = 18
  608. cut_name = documents[0].name[:cut_length]
  609. dataset.name = cut_name + '...'
  610. dataset.description = 'useful for when you want to answer queries about the ' + documents[0].name
  611. db.session.commit()
  612. return dataset, documents, batch
  613. @classmethod
  614. def document_create_args_validate(cls, args: dict):
  615. if 'original_document_id' not in args or not args['original_document_id']:
  616. DocumentService.data_source_args_validate(args)
  617. DocumentService.process_rule_args_validate(args)
  618. else:
  619. if ('data_source' not in args and not args['data_source']) \
  620. and ('process_rule' not in args and not args['process_rule']):
  621. raise ValueError("Data source or Process rule is required")
  622. else:
  623. if 'data_source' in args and args['data_source']:
  624. DocumentService.data_source_args_validate(args)
  625. if 'process_rule' in args and args['process_rule']:
  626. DocumentService.process_rule_args_validate(args)
  627. @classmethod
  628. def data_source_args_validate(cls, args: dict):
  629. if 'data_source' not in args or not args['data_source']:
  630. raise ValueError("Data source is required")
  631. if not isinstance(args['data_source'], dict):
  632. raise ValueError("Data source is invalid")
  633. if 'type' not in args['data_source'] or not args['data_source']['type']:
  634. raise ValueError("Data source type is required")
  635. if args['data_source']['type'] not in Document.DATA_SOURCES:
  636. raise ValueError("Data source type is invalid")
  637. if 'info_list' not in args['data_source'] or not args['data_source']['info_list']:
  638. raise ValueError("Data source info is required")
  639. if args['data_source']['type'] == 'upload_file':
  640. if 'file_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
  641. 'file_info_list']:
  642. raise ValueError("File source info is required")
  643. if args['data_source']['type'] == 'notion_import':
  644. if 'notion_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
  645. 'notion_info_list']:
  646. raise ValueError("Notion source info is required")
  647. @classmethod
  648. def process_rule_args_validate(cls, args: dict):
  649. if 'process_rule' not in args or not args['process_rule']:
  650. raise ValueError("Process rule is required")
  651. if not isinstance(args['process_rule'], dict):
  652. raise ValueError("Process rule is invalid")
  653. if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
  654. raise ValueError("Process rule mode is required")
  655. if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
  656. raise ValueError("Process rule mode is invalid")
  657. if args['process_rule']['mode'] == 'automatic':
  658. args['process_rule']['rules'] = {}
  659. else:
  660. if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
  661. raise ValueError("Process rule rules is required")
  662. if not isinstance(args['process_rule']['rules'], dict):
  663. raise ValueError("Process rule rules is invalid")
  664. if 'pre_processing_rules' not in args['process_rule']['rules'] \
  665. or args['process_rule']['rules']['pre_processing_rules'] is None:
  666. raise ValueError("Process rule pre_processing_rules is required")
  667. if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
  668. raise ValueError("Process rule pre_processing_rules is invalid")
  669. unique_pre_processing_rule_dicts = {}
  670. for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
  671. if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
  672. raise ValueError("Process rule pre_processing_rules id is required")
  673. if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
  674. raise ValueError("Process rule pre_processing_rules id is invalid")
  675. if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
  676. raise ValueError("Process rule pre_processing_rules enabled is required")
  677. if not isinstance(pre_processing_rule['enabled'], bool):
  678. raise ValueError("Process rule pre_processing_rules enabled is invalid")
  679. unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
  680. args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
  681. if 'segmentation' not in args['process_rule']['rules'] \
  682. or args['process_rule']['rules']['segmentation'] is None:
  683. raise ValueError("Process rule segmentation is required")
  684. if not isinstance(args['process_rule']['rules']['segmentation'], dict):
  685. raise ValueError("Process rule segmentation is invalid")
  686. if 'separator' not in args['process_rule']['rules']['segmentation'] \
  687. or not args['process_rule']['rules']['segmentation']['separator']:
  688. raise ValueError("Process rule segmentation separator is required")
  689. if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
  690. raise ValueError("Process rule segmentation separator is invalid")
  691. if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
  692. or not args['process_rule']['rules']['segmentation']['max_tokens']:
  693. raise ValueError("Process rule segmentation max_tokens is required")
  694. if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
  695. raise ValueError("Process rule segmentation max_tokens is invalid")
  696. @classmethod
  697. def estimate_args_validate(cls, args: dict):
  698. if 'info_list' not in args or not args['info_list']:
  699. raise ValueError("Data source info is required")
  700. if not isinstance(args['info_list'], dict):
  701. raise ValueError("Data info is invalid")
  702. if 'process_rule' not in args or not args['process_rule']:
  703. raise ValueError("Process rule is required")
  704. if not isinstance(args['process_rule'], dict):
  705. raise ValueError("Process rule is invalid")
  706. if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
  707. raise ValueError("Process rule mode is required")
  708. if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
  709. raise ValueError("Process rule mode is invalid")
  710. if args['process_rule']['mode'] == 'automatic':
  711. args['process_rule']['rules'] = {}
  712. else:
  713. if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
  714. raise ValueError("Process rule rules is required")
  715. if not isinstance(args['process_rule']['rules'], dict):
  716. raise ValueError("Process rule rules is invalid")
  717. if 'pre_processing_rules' not in args['process_rule']['rules'] \
  718. or args['process_rule']['rules']['pre_processing_rules'] is None:
  719. raise ValueError("Process rule pre_processing_rules is required")
  720. if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
  721. raise ValueError("Process rule pre_processing_rules is invalid")
  722. unique_pre_processing_rule_dicts = {}
  723. for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
  724. if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
  725. raise ValueError("Process rule pre_processing_rules id is required")
  726. if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
  727. raise ValueError("Process rule pre_processing_rules id is invalid")
  728. if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
  729. raise ValueError("Process rule pre_processing_rules enabled is required")
  730. if not isinstance(pre_processing_rule['enabled'], bool):
  731. raise ValueError("Process rule pre_processing_rules enabled is invalid")
  732. unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
  733. args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
  734. if 'segmentation' not in args['process_rule']['rules'] \
  735. or args['process_rule']['rules']['segmentation'] is None:
  736. raise ValueError("Process rule segmentation is required")
  737. if not isinstance(args['process_rule']['rules']['segmentation'], dict):
  738. raise ValueError("Process rule segmentation is invalid")
  739. if 'separator' not in args['process_rule']['rules']['segmentation'] \
  740. or not args['process_rule']['rules']['segmentation']['separator']:
  741. raise ValueError("Process rule segmentation separator is required")
  742. if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
  743. raise ValueError("Process rule segmentation separator is invalid")
  744. if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
  745. or not args['process_rule']['rules']['segmentation']['max_tokens']:
  746. raise ValueError("Process rule segmentation max_tokens is required")
  747. if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
  748. raise ValueError("Process rule segmentation max_tokens is invalid")
  749. class SegmentService:
  750. @classmethod
  751. def segment_create_args_validate(cls, args: dict, document: Document):
  752. if document.doc_form == 'qa_model':
  753. if 'answer' not in args or not args['answer']:
  754. raise ValueError("Answer is required")
  755. @classmethod
  756. def create_segment(cls, args: dict, document: Document):
  757. content = args['content']
  758. doc_id = str(uuid.uuid4())
  759. segment_hash = helper.generate_text_hash(content)
  760. # calc embedding use tokens
  761. tokens = TokenCalculator.get_num_tokens('text-embedding-ada-002', content)
  762. max_position = db.session.query(func.max(DocumentSegment.position)).filter(
  763. DocumentSegment.document_id == document.id
  764. ).scalar()
  765. segment_document = DocumentSegment(
  766. tenant_id=current_user.current_tenant_id,
  767. dataset_id=document.dataset_id,
  768. document_id=document.id,
  769. index_node_id=doc_id,
  770. index_node_hash=segment_hash,
  771. position=max_position + 1 if max_position else 1,
  772. content=content,
  773. word_count=len(content),
  774. tokens=tokens,
  775. created_by=current_user.id
  776. )
  777. if document.doc_form == 'qa_model':
  778. segment_document.answer = args['answer']
  779. db.session.add(segment_document)
  780. db.session.commit()
  781. indexing_cache_key = 'segment_{}_indexing'.format(segment_document.id)
  782. redis_client.setex(indexing_cache_key, 600, 1)
  783. create_segment_to_index_task.delay(segment_document.id, args['keywords'])
  784. return segment_document
  785. @classmethod
  786. def update_segment(cls, args: dict, segment: DocumentSegment, document: Document):
  787. indexing_cache_key = 'segment_{}_indexing'.format(segment.id)
  788. cache_result = redis_client.get(indexing_cache_key)
  789. if cache_result is not None:
  790. raise ValueError("Segment is indexing, please try again later")
  791. content = args['content']
  792. if segment.content == content:
  793. if document.doc_form == 'qa_model':
  794. segment.answer = args['answer']
  795. if args['keywords']:
  796. segment.keywords = args['keywords']
  797. db.session.add(segment)
  798. db.session.commit()
  799. # update segment index task
  800. redis_client.setex(indexing_cache_key, 600, 1)
  801. update_segment_keyword_index_task.delay(segment.id)
  802. else:
  803. segment_hash = helper.generate_text_hash(content)
  804. # calc embedding use tokens
  805. tokens = TokenCalculator.get_num_tokens('text-embedding-ada-002', content)
  806. segment.content = content
  807. segment.index_node_hash = segment_hash
  808. segment.word_count = len(content)
  809. segment.tokens = tokens
  810. segment.status = 'updating'
  811. segment.updated_by = current_user.id
  812. segment.updated_at = datetime.datetime.utcnow()
  813. if document.doc_form == 'qa_model':
  814. segment.answer = args['answer']
  815. db.session.add(segment)
  816. db.session.commit()
  817. # update segment index task
  818. redis_client.setex(indexing_cache_key, 600, 1)
  819. update_segment_index_task.delay(segment.id, args['keywords'])
  820. return segment