| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879 | 
							- import os
 
- from unittest.mock import Mock, patch
 
- import pytest
 
- from core.model_runtime.entities.text_embedding_entities import TextEmbeddingResult
 
- from core.model_runtime.errors.validate import CredentialsValidateFailedError
 
- from core.model_runtime.model_providers.mixedbread.text_embedding.text_embedding import MixedBreadTextEmbeddingModel
 
- def test_validate_credentials():
 
-     model = MixedBreadTextEmbeddingModel()
 
-     with pytest.raises(CredentialsValidateFailedError):
 
-         model.validate_credentials(model="mxbai-embed-large-v1", credentials={"api_key": "invalid_key"})
 
-     with patch("requests.post") as mock_post:
 
-         mock_response = Mock()
 
-         mock_response.json.return_value = {
 
-             "usage": {"prompt_tokens": 3, "total_tokens": 3},
 
-             "model": "mixedbread-ai/mxbai-embed-large-v1",
 
-             "data": [{"embedding": [0.23333 for _ in range(1024)], "index": 0, "object": "embedding"}],
 
-             "object": "list",
 
-             "normalized": "true",
 
-             "encoding_format": "float",
 
-             "dimensions": 1024,
 
-         }
 
-         mock_response.status_code = 200
 
-         mock_post.return_value = mock_response
 
-         model.validate_credentials(
 
-             model="mxbai-embed-large-v1", credentials={"api_key": os.environ.get("MIXEDBREAD_API_KEY")}
 
-         )
 
- def test_invoke_model():
 
-     model = MixedBreadTextEmbeddingModel()
 
-     with patch("requests.post") as mock_post:
 
-         mock_response = Mock()
 
-         mock_response.json.return_value = {
 
-             "usage": {"prompt_tokens": 6, "total_tokens": 6},
 
-             "model": "mixedbread-ai/mxbai-embed-large-v1",
 
-             "data": [
 
-                 {"embedding": [0.23333 for _ in range(1024)], "index": 0, "object": "embedding"},
 
-                 {"embedding": [0.23333 for _ in range(1024)], "index": 1, "object": "embedding"},
 
-             ],
 
-             "object": "list",
 
-             "normalized": "true",
 
-             "encoding_format": "float",
 
-             "dimensions": 1024,
 
-         }
 
-         mock_response.status_code = 200
 
-         mock_post.return_value = mock_response
 
-         result = model.invoke(
 
-             model="mxbai-embed-large-v1",
 
-             credentials={
 
-                 "api_key": os.environ.get("MIXEDBREAD_API_KEY"),
 
-             },
 
-             texts=["hello", "world"],
 
-             user="abc-123",
 
-         )
 
-         assert isinstance(result, TextEmbeddingResult)
 
-         assert len(result.embeddings) == 2
 
-         assert result.usage.total_tokens == 6
 
- def test_get_num_tokens():
 
-     model = MixedBreadTextEmbeddingModel()
 
-     num_tokens = model.get_num_tokens(
 
-         model="mxbai-embed-large-v1",
 
-         credentials={
 
-             "api_key": os.environ.get("MIXEDBREAD_API_KEY"),
 
-         },
 
-         texts=["ping"],
 
-     )
 
-     assert num_tokens == 1
 
 
  |