| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091 | import loggingimport timeimport clickfrom celery import shared_taskfrom werkzeug.exceptions import NotFoundfrom core.rag.datasource.vdb.vector_factory import Vectorfrom core.rag.models.document import Documentfrom extensions.ext_database import dbfrom extensions.ext_redis import redis_clientfrom models.dataset import Datasetfrom models.model import App, AppAnnotationSetting, MessageAnnotationfrom services.dataset_service import DatasetCollectionBindingService@shared_task(queue="dataset")def batch_import_annotations_task(job_id: str, content_list: list[dict], app_id: str, tenant_id: str, user_id: str):    """    Add annotation to index.    :param job_id: job_id    :param content_list: content list    :param app_id: app id    :param tenant_id: tenant id    :param user_id: user_id    """    logging.info(click.style("Start batch import annotation: {}".format(job_id), fg="green"))    start_at = time.perf_counter()    indexing_cache_key = "app_annotation_batch_import_{}".format(str(job_id))    # get app info    app = db.session.query(App).filter(App.id == app_id, App.tenant_id == tenant_id, App.status == "normal").first()    if app:        try:            documents = []            for content in content_list:                annotation = MessageAnnotation(                    app_id=app.id, content=content["answer"], question=content["question"], account_id=user_id                )                db.session.add(annotation)                db.session.flush()                document = Document(                    page_content=content["question"],                    metadata={"annotation_id": annotation.id, "app_id": app_id, "doc_id": annotation.id},                )                documents.append(document)            # if annotation reply is enabled , batch add annotations' index            app_annotation_setting = (                db.session.query(AppAnnotationSetting).filter(AppAnnotationSetting.app_id == app_id).first()            )            if app_annotation_setting:                dataset_collection_binding = (                    DatasetCollectionBindingService.get_dataset_collection_binding_by_id_and_type(                        app_annotation_setting.collection_binding_id, "annotation"                    )                )                if not dataset_collection_binding:                    raise NotFound("App annotation setting not found")                dataset = Dataset(                    id=app_id,                    tenant_id=tenant_id,                    indexing_technique="high_quality",                    embedding_model_provider=dataset_collection_binding.provider_name,                    embedding_model=dataset_collection_binding.model_name,                    collection_binding_id=dataset_collection_binding.id,                )                vector = Vector(dataset, attributes=["doc_id", "annotation_id", "app_id"])                vector.create(documents, duplicate_check=True)            db.session.commit()            redis_client.setex(indexing_cache_key, 600, "completed")            end_at = time.perf_counter()            logging.info(                click.style(                    "Build index successful for batch import annotation: {} latency: {}".format(                        job_id, end_at - start_at                    ),                    fg="green",                )            )        except Exception as e:            db.session.rollback()            redis_client.setex(indexing_cache_key, 600, "error")            indexing_error_msg_key = "app_annotation_batch_import_error_msg_{}".format(str(job_id))            redis_client.setex(indexing_error_msg_key, 600, str(e))            logging.exception("Build index for batch import annotations failed")
 |