| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731 | 
							- """Wrapper around Qdrant vector database."""
 
- from __future__ import annotations
 
- import asyncio
 
- import functools
 
- import uuid
 
- import warnings
 
- from itertools import islice
 
- from operator import itemgetter
 
- from typing import (
 
-     TYPE_CHECKING,
 
-     Any,
 
-     Callable,
 
-     Dict,
 
-     Generator,
 
-     Iterable,
 
-     List,
 
-     Optional,
 
-     Sequence,
 
-     Tuple,
 
-     Type,
 
-     Union,
 
- )
 
- import numpy as np
 
- from langchain.docstore.document import Document
 
- from langchain.embeddings.base import Embeddings
 
- from langchain.vectorstores import VectorStore
 
- from langchain.vectorstores.utils import maximal_marginal_relevance
 
- from qdrant_client.http.models import PayloadSchemaType
 
- if TYPE_CHECKING:
 
-     from qdrant_client import grpc  # noqa
 
-     from qdrant_client.conversions import common_types
 
-     from qdrant_client.http import models as rest
 
-     DictFilter = Dict[str, Union[str, int, bool, dict, list]]
 
-     MetadataFilter = Union[DictFilter, common_types.Filter]
 
- class QdrantException(Exception):
 
-     """Base class for all the Qdrant related exceptions"""
 
- def sync_call_fallback(method: Callable) -> Callable:
 
-     """
 
-     Decorator to call the synchronous method of the class if the async method is not
 
-     implemented. This decorator might be only used for the methods that are defined
 
-     as async in the class.
 
-     """
 
-     @functools.wraps(method)
 
-     async def wrapper(self: Any, *args: Any, **kwargs: Any) -> Any:
 
-         try:
 
-             return await method(self, *args, **kwargs)
 
-         except NotImplementedError:
 
-             # If the async method is not implemented, call the synchronous method
 
-             # by removing the first letter from the method name. For example,
 
-             # if the async method is called ``aaad_texts``, the synchronous method
 
-             # will be called ``aad_texts``.
 
-             sync_method = functools.partial(
 
-                 getattr(self, method.__name__[1:]), *args, **kwargs
 
-             )
 
-             return await asyncio.get_event_loop().run_in_executor(None, sync_method)
 
-     return wrapper
 
- class Qdrant(VectorStore):
 
-     """Wrapper around Qdrant vector database.
 
-     To use you should have the ``qdrant-client`` package installed.
 
-     Example:
 
-         .. code-block:: python
 
-             from qdrant_client import QdrantClient
 
-             from langchain import Qdrant
 
-             client = QdrantClient()
 
-             collection_name = "MyCollection"
 
-             qdrant = Qdrant(client, collection_name, embedding_function)
 
-     """
 
-     CONTENT_KEY = "page_content"
 
-     METADATA_KEY = "metadata"
 
-     GROUP_KEY = "group_id"
 
-     VECTOR_NAME = None
 
-     def __init__(
 
-         self,
 
-         client: Any,
 
-         collection_name: str,
 
-         embeddings: Optional[Embeddings] = None,
 
-         content_payload_key: str = CONTENT_KEY,
 
-         metadata_payload_key: str = METADATA_KEY,
 
-         group_payload_key: str = GROUP_KEY,
 
-         group_id: str = None,
 
-         distance_strategy: str = "COSINE",
 
-         vector_name: Optional[str] = VECTOR_NAME,
 
-         embedding_function: Optional[Callable] = None,  # deprecated
 
-         is_new_collection: bool = False
 
-     ):
 
-         """Initialize with necessary components."""
 
-         try:
 
-             import qdrant_client
 
-         except ImportError:
 
-             raise ValueError(
 
-                 "Could not import qdrant-client python package. "
 
-                 "Please install it with `pip install qdrant-client`."
 
-             )
 
-         if not isinstance(client, qdrant_client.QdrantClient):
 
-             raise ValueError(
 
-                 f"client should be an instance of qdrant_client.QdrantClient, "
 
-                 f"got {type(client)}"
 
-             )
 
-         if embeddings is None and embedding_function is None:
 
-             raise ValueError(
 
-                 "`embeddings` value can't be None. Pass `Embeddings` instance."
 
-             )
 
-         if embeddings is not None and embedding_function is not None:
 
-             raise ValueError(
 
-                 "Both `embeddings` and `embedding_function` are passed. "
 
-                 "Use `embeddings` only."
 
-             )
 
-         self._embeddings = embeddings
 
-         self._embeddings_function = embedding_function
 
-         self.client: qdrant_client.QdrantClient = client
 
-         self.collection_name = collection_name
 
-         self.content_payload_key = content_payload_key or self.CONTENT_KEY
 
-         self.metadata_payload_key = metadata_payload_key or self.METADATA_KEY
 
-         self.group_payload_key = group_payload_key or self.GROUP_KEY
 
-         self.vector_name = vector_name or self.VECTOR_NAME
 
-         self.group_id = group_id
 
-         self.is_new_collection= is_new_collection
 
-         if embedding_function is not None:
 
-             warnings.warn(
 
-                 "Using `embedding_function` is deprecated. "
 
-                 "Pass `Embeddings` instance to `embeddings` instead."
 
-             )
 
-         if not isinstance(embeddings, Embeddings):
 
-             warnings.warn(
 
-                 "`embeddings` should be an instance of `Embeddings`."
 
-                 "Using `embeddings` as `embedding_function` which is deprecated"
 
-             )
 
-             self._embeddings_function = embeddings
 
-             self._embeddings = None
 
-         self.distance_strategy = distance_strategy.upper()
 
-     @property
 
-     def embeddings(self) -> Optional[Embeddings]:
 
-         return self._embeddings
 
-     def add_texts(
 
-         self,
 
-         texts: Iterable[str],
 
-         metadatas: Optional[List[dict]] = None,
 
-         ids: Optional[Sequence[str]] = None,
 
-         batch_size: int = 64,
 
-         **kwargs: Any,
 
-     ) -> List[str]:
 
-         """Run more texts through the embeddings and add to the vectorstore.
 
-         Args:
 
-             texts: Iterable of strings to add to the vectorstore.
 
-             metadatas: Optional list of metadatas associated with the texts.
 
-             ids:
 
-                 Optional list of ids to associate with the texts. Ids have to be
 
-                 uuid-like strings.
 
-             batch_size:
 
-                 How many vectors upload per-request.
 
-                 Default: 64
 
-             group_id:
 
-                 collection group
 
-         Returns:
 
-             List of ids from adding the texts into the vectorstore.
 
-         """
 
-         added_ids = []
 
-         for batch_ids, points in self._generate_rest_batches(
 
-             texts, metadatas, ids, batch_size
 
-         ):
 
-             self.client.upsert(
 
-                 collection_name=self.collection_name, points=points, **kwargs
 
-             )
 
-             added_ids.extend(batch_ids)
 
-         # if is new collection, create payload index on group_id
 
-         if self.is_new_collection:
 
-             self.client.create_payload_index(self.collection_name, self.group_payload_key,
 
-                                              field_schema=PayloadSchemaType.KEYWORD,
 
-                                              field_type=PayloadSchemaType.KEYWORD)
 
-         return added_ids
 
-     @sync_call_fallback
 
-     async def aadd_texts(
 
-         self,
 
-         texts: Iterable[str],
 
-         metadatas: Optional[List[dict]] = None,
 
-         ids: Optional[Sequence[str]] = None,
 
-         batch_size: int = 64,
 
-         **kwargs: Any,
 
-     ) -> List[str]:
 
-         """Run more texts through the embeddings and add to the vectorstore.
 
-         Args:
 
-             texts: Iterable of strings to add to the vectorstore.
 
-             metadatas: Optional list of metadatas associated with the texts.
 
-             ids:
 
-                 Optional list of ids to associate with the texts. Ids have to be
 
-                 uuid-like strings.
 
-             batch_size:
 
-                 How many vectors upload per-request.
 
-                 Default: 64
 
-         Returns:
 
-             List of ids from adding the texts into the vectorstore.
 
-         """
 
-         from qdrant_client import grpc  # noqa
 
-         from qdrant_client.conversions.conversion import RestToGrpc
 
-         added_ids = []
 
-         for batch_ids, points in self._generate_rest_batches(
 
-             texts, metadatas, ids, batch_size
 
-         ):
 
-             await self.client.async_grpc_points.Upsert(
 
-                 grpc.UpsertPoints(
 
-                     collection_name=self.collection_name,
 
-                     points=[RestToGrpc.convert_point_struct(point) for point in points],
 
-                 )
 
-             )
 
-             added_ids.extend(batch_ids)
 
-         return added_ids
 
-     def similarity_search(
 
-         self,
 
-         query: str,
 
-         k: int = 4,
 
-         filter: Optional[MetadataFilter] = None,
 
-         search_params: Optional[common_types.SearchParams] = None,
 
-         offset: int = 0,
 
-         score_threshold: Optional[float] = None,
 
-         consistency: Optional[common_types.ReadConsistency] = None,
 
-         **kwargs: Any,
 
-     ) -> List[Tuple[Document, float]]:
 
-         """Return docs most similar to query.
 
-         Args:
 
-             query: Text to look up documents similar to.
 
-             k: Number of Documents to return. Defaults to 4.
 
-             filter: Filter by metadata. Defaults to None.
 
-             search_params: Additional search params
 
-             offset:
 
-                 Offset of the first result to return.
 
-                 May be used to paginate results.
 
-                 Note: large offset values may cause performance issues.
 
-             score_threshold:
 
-                 Define a minimal score threshold for the result.
 
-                 If defined, less similar results will not be returned.
 
-                 Score of the returned result might be higher or smaller than the
 
-                 threshold depending on the Distance function used.
 
-                 E.g. for cosine similarity only higher scores will be returned.
 
-             consistency:
 
-                 Read consistency of the search. Defines how many replicas should be
 
-                 queried before returning the result.
 
-                 Values:
 
-                 - int - number of replicas to query, values should present in all
 
-                         queried replicas
 
-                 - 'majority' - query all replicas, but return values present in the
 
-                                majority of replicas
 
-                 - 'quorum' - query the majority of replicas, return values present in
 
-                              all of them
 
-                 - 'all' - query all replicas, and return values present in all replicas
 
-         Returns:
 
-             List of Documents most similar to the query.
 
-         """
 
-         results = self.similarity_search_with_score(
 
-             query,
 
-             k,
 
-             filter=filter,
 
-             search_params=search_params,
 
-             offset=offset,
 
-             score_threshold=score_threshold,
 
-             consistency=consistency,
 
-             **kwargs,
 
-         )
 
-         return list(map(itemgetter(0), results))
 
-     @sync_call_fallback
 
-     async def asimilarity_search(
 
-         self,
 
-         query: str,
 
-         k: int = 4,
 
-         filter: Optional[MetadataFilter] = None,
 
-         **kwargs: Any,
 
-     ) -> List[Document]:
 
-         """Return docs most similar to query.
 
-         Args:
 
-             query: Text to look up documents similar to.
 
-             k: Number of Documents to return. Defaults to 4.
 
-             filter: Filter by metadata. Defaults to None.
 
-         Returns:
 
-             List of Documents most similar to the query.
 
-         """
 
-         results = await self.asimilarity_search_with_score(query, k, filter, **kwargs)
 
-         return list(map(itemgetter(0), results))
 
-     def similarity_search_with_score(
 
-         self,
 
-         query: str,
 
-         k: int = 4,
 
-         filter: Optional[MetadataFilter] = None,
 
-         search_params: Optional[common_types.SearchParams] = None,
 
-         offset: int = 0,
 
-         score_threshold: Optional[float] = None,
 
-         consistency: Optional[common_types.ReadConsistency] = None,
 
-         **kwargs: Any,
 
-     ) -> List[Tuple[Document, float]]:
 
-         """Return docs most similar to query.
 
-         Args:
 
-             query: Text to look up documents similar to.
 
-             k: Number of Documents to return. Defaults to 4.
 
-             filter: Filter by metadata. Defaults to None.
 
-             search_params: Additional search params
 
-             offset:
 
-                 Offset of the first result to return.
 
-                 May be used to paginate results.
 
-                 Note: large offset values may cause performance issues.
 
-             score_threshold:
 
-                 Define a minimal score threshold for the result.
 
-                 If defined, less similar results will not be returned.
 
-                 Score of the returned result might be higher or smaller than the
 
-                 threshold depending on the Distance function used.
 
-                 E.g. for cosine similarity only higher scores will be returned.
 
-             consistency:
 
-                 Read consistency of the search. Defines how many replicas should be
 
-                 queried before returning the result.
 
-                 Values:
 
-                 - int - number of replicas to query, values should present in all
 
-                         queried replicas
 
-                 - 'majority' - query all replicas, but return values present in the
 
-                                majority of replicas
 
-                 - 'quorum' - query the majority of replicas, return values present in
 
-                              all of them
 
-                 - 'all' - query all replicas, and return values present in all replicas
 
-         Returns:
 
-             List of documents most similar to the query text and distance for each.
 
-         """
 
-         return self.similarity_search_with_score_by_vector(
 
-             self._embed_query(query),
 
-             k,
 
-             filter=filter,
 
-             search_params=search_params,
 
-             offset=offset,
 
-             score_threshold=score_threshold,
 
-             consistency=consistency,
 
-             **kwargs,
 
-         )
 
-     @sync_call_fallback
 
-     async def asimilarity_search_with_score(
 
-         self,
 
-         query: str,
 
-         k: int = 4,
 
-         filter: Optional[MetadataFilter] = None,
 
-         search_params: Optional[common_types.SearchParams] = None,
 
-         offset: int = 0,
 
-         score_threshold: Optional[float] = None,
 
-         consistency: Optional[common_types.ReadConsistency] = None,
 
-         **kwargs: Any,
 
-     ) -> List[Tuple[Document, float]]:
 
-         """Return docs most similar to query.
 
-         Args:
 
-             query: Text to look up documents similar to.
 
-             k: Number of Documents to return. Defaults to 4.
 
-             filter: Filter by metadata. Defaults to None.
 
-             search_params: Additional search params
 
-             offset:
 
-                 Offset of the first result to return.
 
-                 May be used to paginate results.
 
-                 Note: large offset values may cause performance issues.
 
-             score_threshold:
 
-                 Define a minimal score threshold for the result.
 
-                 If defined, less similar results will not be returned.
 
-                 Score of the returned result might be higher or smaller than the
 
-                 threshold depending on the Distance function used.
 
-                 E.g. for cosine similarity only higher scores will be returned.
 
-             consistency:
 
-                 Read consistency of the search. Defines how many replicas should be
 
-                 queried before returning the result.
 
-                 Values:
 
-                 - int - number of replicas to query, values should present in all
 
-                         queried replicas
 
-                 - 'majority' - query all replicas, but return values present in the
 
-                                majority of replicas
 
-                 - 'quorum' - query the majority of replicas, return values present in
 
-                              all of them
 
-                 - 'all' - query all replicas, and return values present in all replicas
 
-         Returns:
 
-             List of documents most similar to the query text and distance for each.
 
-         """
 
-         return await self.asimilarity_search_with_score_by_vector(
 
-             self._embed_query(query),
 
-             k,
 
-             filter=filter,
 
-             search_params=search_params,
 
-             offset=offset,
 
-             score_threshold=score_threshold,
 
-             consistency=consistency,
 
-             **kwargs,
 
-         )
 
-     def similarity_search_by_vector(
 
-         self,
 
-         embedding: List[float],
 
-         k: int = 4,
 
-         filter: Optional[MetadataFilter] = None,
 
-         search_params: Optional[common_types.SearchParams] = None,
 
-         offset: int = 0,
 
-         score_threshold: Optional[float] = None,
 
-         consistency: Optional[common_types.ReadConsistency] = None,
 
-         **kwargs: Any,
 
-     ) -> List[Document]:
 
-         """Return docs most similar to embedding vector.
 
-         Args:
 
-             embedding: Embedding vector to look up documents similar to.
 
-             k: Number of Documents to return. Defaults to 4.
 
-             filter: Filter by metadata. Defaults to None.
 
-             search_params: Additional search params
 
-             offset:
 
-                 Offset of the first result to return.
 
-                 May be used to paginate results.
 
-                 Note: large offset values may cause performance issues.
 
-             score_threshold:
 
-                 Define a minimal score threshold for the result.
 
-                 If defined, less similar results will not be returned.
 
-                 Score of the returned result might be higher or smaller than the
 
-                 threshold depending on the Distance function used.
 
-                 E.g. for cosine similarity only higher scores will be returned.
 
-             consistency:
 
-                 Read consistency of the search. Defines how many replicas should be
 
-                 queried before returning the result.
 
-                 Values:
 
-                 - int - number of replicas to query, values should present in all
 
-                         queried replicas
 
-                 - 'majority' - query all replicas, but return values present in the
 
-                                majority of replicas
 
-                 - 'quorum' - query the majority of replicas, return values present in
 
-                              all of them
 
-                 - 'all' - query all replicas, and return values present in all replicas
 
-         Returns:
 
-             List of Documents most similar to the query.
 
-         """
 
-         results = self.similarity_search_with_score_by_vector(
 
-             embedding,
 
-             k,
 
-             filter=filter,
 
-             search_params=search_params,
 
-             offset=offset,
 
-             score_threshold=score_threshold,
 
-             consistency=consistency,
 
-             **kwargs,
 
-         )
 
-         return list(map(itemgetter(0), results))
 
-     @sync_call_fallback
 
-     async def asimilarity_search_by_vector(
 
-         self,
 
-         embedding: List[float],
 
-         k: int = 4,
 
-         filter: Optional[MetadataFilter] = None,
 
-         search_params: Optional[common_types.SearchParams] = None,
 
-         offset: int = 0,
 
-         score_threshold: Optional[float] = None,
 
-         consistency: Optional[common_types.ReadConsistency] = None,
 
-         **kwargs: Any,
 
-     ) -> List[Document]:
 
-         """Return docs most similar to embedding vector.
 
-         Args:
 
-             embedding: Embedding vector to look up documents similar to.
 
-             k: Number of Documents to return. Defaults to 4.
 
-             filter: Filter by metadata. Defaults to None.
 
-             search_params: Additional search params
 
-             offset:
 
-                 Offset of the first result to return.
 
-                 May be used to paginate results.
 
-                 Note: large offset values may cause performance issues.
 
-             score_threshold:
 
-                 Define a minimal score threshold for the result.
 
-                 If defined, less similar results will not be returned.
 
-                 Score of the returned result might be higher or smaller than the
 
-                 threshold depending on the Distance function used.
 
-                 E.g. for cosine similarity only higher scores will be returned.
 
-             consistency:
 
-                 Read consistency of the search. Defines how many replicas should be
 
-                 queried before returning the result.
 
-                 Values:
 
-                 - int - number of replicas to query, values should present in all
 
-                         queried replicas
 
-                 - 'majority' - query all replicas, but return values present in the
 
-                                majority of replicas
 
-                 - 'quorum' - query the majority of replicas, return values present in
 
-                              all of them
 
-                 - 'all' - query all replicas, and return values present in all replicas
 
-         Returns:
 
-             List of Documents most similar to the query.
 
-         """
 
-         results = await self.asimilarity_search_with_score_by_vector(
 
-             embedding,
 
-             k,
 
-             filter=filter,
 
-             search_params=search_params,
 
-             offset=offset,
 
-             score_threshold=score_threshold,
 
-             consistency=consistency,
 
-             **kwargs,
 
-         )
 
-         return list(map(itemgetter(0), results))
 
-     def similarity_search_with_score_by_vector(
 
-         self,
 
-         embedding: List[float],
 
-         k: int = 4,
 
-         filter: Optional[MetadataFilter] = None,
 
-         search_params: Optional[common_types.SearchParams] = None,
 
-         offset: int = 0,
 
-         score_threshold: Optional[float] = None,
 
-         consistency: Optional[common_types.ReadConsistency] = None,
 
-         **kwargs: Any,
 
-     ) -> List[Tuple[Document, float]]:
 
-         """Return docs most similar to embedding vector.
 
-         Args:
 
-             embedding: Embedding vector to look up documents similar to.
 
-             k: Number of Documents to return. Defaults to 4.
 
-             filter: Filter by metadata. Defaults to None.
 
-             search_params: Additional search params
 
-             offset:
 
-                 Offset of the first result to return.
 
-                 May be used to paginate results.
 
-                 Note: large offset values may cause performance issues.
 
-             score_threshold:
 
-                 Define a minimal score threshold for the result.
 
-                 If defined, less similar results will not be returned.
 
-                 Score of the returned result might be higher or smaller than the
 
-                 threshold depending on the Distance function used.
 
-                 E.g. for cosine similarity only higher scores will be returned.
 
-             consistency:
 
-                 Read consistency of the search. Defines how many replicas should be
 
-                 queried before returning the result.
 
-                 Values:
 
-                 - int - number of replicas to query, values should present in all
 
-                         queried replicas
 
-                 - 'majority' - query all replicas, but return values present in the
 
-                                majority of replicas
 
-                 - 'quorum' - query the majority of replicas, return values present in
 
-                              all of them
 
-                 - 'all' - query all replicas, and return values present in all replicas
 
-         Returns:
 
-             List of documents most similar to the query text and distance for each.
 
-         """
 
-         if filter is not None and isinstance(filter, dict):
 
-             warnings.warn(
 
-                 "Using dict as a `filter` is deprecated. Please use qdrant-client "
 
-                 "filters directly: "
 
-                 "https://qdrant.tech/documentation/concepts/filtering/",
 
-                 DeprecationWarning,
 
-             )
 
-             qdrant_filter = self._qdrant_filter_from_dict(filter)
 
-         else:
 
-             qdrant_filter = filter
 
-         query_vector = embedding
 
-         if self.vector_name is not None:
 
-             query_vector = (self.vector_name, embedding)  # type: ignore[assignment]
 
-         results = self.client.search(
 
-             collection_name=self.collection_name,
 
-             query_vector=query_vector,
 
-             query_filter=qdrant_filter,
 
-             search_params=search_params,
 
-             limit=k,
 
-             offset=offset,
 
-             with_payload=True,
 
-             with_vectors=True,  # Langchain does not expect vectors to be returned
 
-             score_threshold=score_threshold,
 
-             consistency=consistency,
 
-             **kwargs,
 
-         )
 
-         return [
 
-             (
 
-                 self._document_from_scored_point(
 
-                     result, self.content_payload_key, self.metadata_payload_key
 
-                 ),
 
-                 result.score,
 
-             )
 
-             for result in results
 
-         ]
 
-     @sync_call_fallback
 
-     async def asimilarity_search_with_score_by_vector(
 
-         self,
 
-         embedding: List[float],
 
-         k: int = 4,
 
-         filter: Optional[MetadataFilter] = None,
 
-         search_params: Optional[common_types.SearchParams] = None,
 
-         offset: int = 0,
 
-         score_threshold: Optional[float] = None,
 
-         consistency: Optional[common_types.ReadConsistency] = None,
 
-         **kwargs: Any,
 
-     ) -> List[Tuple[Document, float]]:
 
-         """Return docs most similar to embedding vector.
 
-         Args:
 
-             embedding: Embedding vector to look up documents similar to.
 
-             k: Number of Documents to return. Defaults to 4.
 
-             filter: Filter by metadata. Defaults to None.
 
-             search_params: Additional search params
 
-             offset:
 
-                 Offset of the first result to return.
 
-                 May be used to paginate results.
 
-                 Note: large offset values may cause performance issues.
 
-             score_threshold:
 
-                 Define a minimal score threshold for the result.
 
-                 If defined, less similar results will not be returned.
 
-                 Score of the returned result might be higher or smaller than the
 
-                 threshold depending on the Distance function used.
 
-                 E.g. for cosine similarity only higher scores will be returned.
 
-             consistency:
 
-                 Read consistency of the search. Defines how many replicas should be
 
-                 queried before returning the result.
 
-                 Values:
 
-                 - int - number of replicas to query, values should present in all
 
-                         queried replicas
 
-                 - 'majority' - query all replicas, but return values present in the
 
-                                majority of replicas
 
-                 - 'quorum' - query the majority of replicas, return values present in
 
-                              all of them
 
-                 - 'all' - query all replicas, and return values present in all replicas
 
-         Returns:
 
-             List of documents most similar to the query text and distance for each.
 
-         """
 
-         from qdrant_client import grpc  # noqa
 
-         from qdrant_client.conversions.conversion import RestToGrpc
 
-         from qdrant_client.http import models as rest
 
-         if filter is not None and isinstance(filter, dict):
 
-             warnings.warn(
 
-                 "Using dict as a `filter` is deprecated. Please use qdrant-client "
 
-                 "filters directly: "
 
-                 "https://qdrant.tech/documentation/concepts/filtering/",
 
-                 DeprecationWarning,
 
-             )
 
-             qdrant_filter = self._qdrant_filter_from_dict(filter)
 
-         else:
 
-             qdrant_filter = filter
 
-         if qdrant_filter is not None and isinstance(qdrant_filter, rest.Filter):
 
-             qdrant_filter = RestToGrpc.convert_filter(qdrant_filter)
 
-         response = await self.client.async_grpc_points.Search(
 
-             grpc.SearchPoints(
 
-                 collection_name=self.collection_name,
 
-                 vector_name=self.vector_name,
 
-                 vector=embedding,
 
-                 filter=qdrant_filter,
 
-                 params=search_params,
 
-                 limit=k,
 
-                 offset=offset,
 
-                 with_payload=grpc.WithPayloadSelector(enable=True),
 
-                 with_vectors=grpc.WithVectorsSelector(enable=False),
 
-                 score_threshold=score_threshold,
 
-                 read_consistency=consistency,
 
-                 **kwargs,
 
-             )
 
-         )
 
-         return [
 
-             (
 
-                 self._document_from_scored_point_grpc(
 
-                     result, self.content_payload_key, self.metadata_payload_key
 
-                 ),
 
-                 result.score,
 
-             )
 
-             for result in response.result
 
-         ]
 
-     def max_marginal_relevance_search(
 
-         self,
 
-         query: str,
 
-         k: int = 4,
 
-         fetch_k: int = 20,
 
-         lambda_mult: float = 0.5,
 
-         **kwargs: Any,
 
-     ) -> List[Document]:
 
-         """Return docs selected using the maximal marginal relevance.
 
-         Maximal marginal relevance optimizes for similarity to query AND diversity
 
-         among selected documents.
 
-         Args:
 
-             query: Text to look up documents similar to.
 
-             k: Number of Documents to return. Defaults to 4.
 
-             fetch_k: Number of Documents to fetch to pass to MMR algorithm.
 
-                      Defaults to 20.
 
-             lambda_mult: Number between 0 and 1 that determines the degree
 
-                         of diversity among the results with 0 corresponding
 
-                         to maximum diversity and 1 to minimum diversity.
 
-                         Defaults to 0.5.
 
-         Returns:
 
-             List of Documents selected by maximal marginal relevance.
 
-         """
 
-         query_embedding = self._embed_query(query)
 
-         return self.max_marginal_relevance_search_by_vector(
 
-             query_embedding, k, fetch_k, lambda_mult, **kwargs
 
-         )
 
-     @sync_call_fallback
 
-     async def amax_marginal_relevance_search(
 
-         self,
 
-         query: str,
 
-         k: int = 4,
 
-         fetch_k: int = 20,
 
-         lambda_mult: float = 0.5,
 
-         **kwargs: Any,
 
-     ) -> List[Document]:
 
-         """Return docs selected using the maximal marginal relevance.
 
-         Maximal marginal relevance optimizes for similarity to query AND diversity
 
-         among selected documents.
 
-         Args:
 
-             query: Text to look up documents similar to.
 
-             k: Number of Documents to return. Defaults to 4.
 
-             fetch_k: Number of Documents to fetch to pass to MMR algorithm.
 
-                      Defaults to 20.
 
-             lambda_mult: Number between 0 and 1 that determines the degree
 
-                         of diversity among the results with 0 corresponding
 
-                         to maximum diversity and 1 to minimum diversity.
 
-                         Defaults to 0.5.
 
-         Returns:
 
-             List of Documents selected by maximal marginal relevance.
 
-         """
 
-         query_embedding = self._embed_query(query)
 
-         return await self.amax_marginal_relevance_search_by_vector(
 
-             query_embedding, k, fetch_k, lambda_mult, **kwargs
 
-         )
 
-     def max_marginal_relevance_search_by_vector(
 
-         self,
 
-         embedding: List[float],
 
-         k: int = 4,
 
-         fetch_k: int = 20,
 
-         lambda_mult: float = 0.5,
 
-         **kwargs: Any,
 
-     ) -> List[Document]:
 
-         """Return docs selected using the maximal marginal relevance.
 
-         Maximal marginal relevance optimizes for similarity to query AND diversity
 
-         among selected documents.
 
-         Args:
 
-             embedding: Embedding to look up documents similar to.
 
-             k: Number of Documents to return. Defaults to 4.
 
-             fetch_k: Number of Documents to fetch to pass to MMR algorithm.
 
-             lambda_mult: Number between 0 and 1 that determines the degree
 
-                         of diversity among the results with 0 corresponding
 
-                         to maximum diversity and 1 to minimum diversity.
 
-                         Defaults to 0.5.
 
-         Returns:
 
-             List of Documents selected by maximal marginal relevance.
 
-         """
 
-         results = self.max_marginal_relevance_search_with_score_by_vector(
 
-             embedding=embedding, k=k, fetch_k=fetch_k, lambda_mult=lambda_mult, **kwargs
 
-         )
 
-         return list(map(itemgetter(0), results))
 
-     @sync_call_fallback
 
-     async def amax_marginal_relevance_search_by_vector(
 
-         self,
 
-         embedding: List[float],
 
-         k: int = 4,
 
-         fetch_k: int = 20,
 
-         lambda_mult: float = 0.5,
 
-         **kwargs: Any,
 
-     ) -> List[Document]:
 
-         """Return docs selected using the maximal marginal relevance.
 
-         Maximal marginal relevance optimizes for similarity to query AND diversity
 
-         among selected documents.
 
-         Args:
 
-             query: Text to look up documents similar to.
 
-             k: Number of Documents to return. Defaults to 4.
 
-             fetch_k: Number of Documents to fetch to pass to MMR algorithm.
 
-                      Defaults to 20.
 
-             lambda_mult: Number between 0 and 1 that determines the degree
 
-                         of diversity among the results with 0 corresponding
 
-                         to maximum diversity and 1 to minimum diversity.
 
-                         Defaults to 0.5.
 
-         Returns:
 
-             List of Documents selected by maximal marginal relevance and distance for
 
-             each.
 
-         """
 
-         results = await self.amax_marginal_relevance_search_with_score_by_vector(
 
-             embedding, k, fetch_k, lambda_mult, **kwargs
 
-         )
 
-         return list(map(itemgetter(0), results))
 
-     def max_marginal_relevance_search_with_score_by_vector(
 
-         self,
 
-         embedding: List[float],
 
-         k: int = 4,
 
-         fetch_k: int = 20,
 
-         lambda_mult: float = 0.5,
 
-         **kwargs: Any,
 
-     ) -> List[Tuple[Document, float]]:
 
-         """Return docs selected using the maximal marginal relevance.
 
-         Maximal marginal relevance optimizes for similarity to query AND diversity
 
-         among selected documents.
 
-         Args:
 
-             query: Text to look up documents similar to.
 
-             k: Number of Documents to return. Defaults to 4.
 
-             fetch_k: Number of Documents to fetch to pass to MMR algorithm.
 
-                      Defaults to 20.
 
-             lambda_mult: Number between 0 and 1 that determines the degree
 
-                         of diversity among the results with 0 corresponding
 
-                         to maximum diversity and 1 to minimum diversity.
 
-                         Defaults to 0.5.
 
-         Returns:
 
-             List of Documents selected by maximal marginal relevance and distance for
 
-             each.
 
-         """
 
-         query_vector = embedding
 
-         if self.vector_name is not None:
 
-             query_vector = (self.vector_name, query_vector)  # type: ignore[assignment]
 
-         results = self.client.search(
 
-             collection_name=self.collection_name,
 
-             query_vector=query_vector,
 
-             with_payload=True,
 
-             with_vectors=True,
 
-             limit=fetch_k,
 
-         )
 
-         embeddings = [
 
-             result.vector.get(self.vector_name)  # type: ignore[index, union-attr]
 
-             if self.vector_name is not None
 
-             else result.vector
 
-             for result in results
 
-         ]
 
-         mmr_selected = maximal_marginal_relevance(
 
-             np.array(embedding), embeddings, k=k, lambda_mult=lambda_mult
 
-         )
 
-         return [
 
-             (
 
-                 self._document_from_scored_point(
 
-                     results[i], self.content_payload_key, self.metadata_payload_key
 
-                 ),
 
-                 results[i].score,
 
-             )
 
-             for i in mmr_selected
 
-         ]
 
-     @sync_call_fallback
 
-     async def amax_marginal_relevance_search_with_score_by_vector(
 
-         self,
 
-         embedding: List[float],
 
-         k: int = 4,
 
-         fetch_k: int = 20,
 
-         lambda_mult: float = 0.5,
 
-         **kwargs: Any,
 
-     ) -> List[Tuple[Document, float]]:
 
-         """Return docs selected using the maximal marginal relevance.
 
-         Maximal marginal relevance optimizes for similarity to query AND diversity
 
-         among selected documents.
 
-         Args:
 
-             query: Text to look up documents similar to.
 
-             k: Number of Documents to return. Defaults to 4.
 
-             fetch_k: Number of Documents to fetch to pass to MMR algorithm.
 
-                      Defaults to 20.
 
-             lambda_mult: Number between 0 and 1 that determines the degree
 
-                         of diversity among the results with 0 corresponding
 
-                         to maximum diversity and 1 to minimum diversity.
 
-                         Defaults to 0.5.
 
-         Returns:
 
-             List of Documents selected by maximal marginal relevance and distance for
 
-             each.
 
-         """
 
-         from qdrant_client import grpc  # noqa
 
-         from qdrant_client.conversions.conversion import GrpcToRest
 
-         response = await self.client.async_grpc_points.Search(
 
-             grpc.SearchPoints(
 
-                 collection_name=self.collection_name,
 
-                 vector_name=self.vector_name,
 
-                 vector=embedding,
 
-                 with_payload=grpc.WithPayloadSelector(enable=True),
 
-                 with_vectors=grpc.WithVectorsSelector(enable=True),
 
-                 limit=fetch_k,
 
-             )
 
-         )
 
-         results = [
 
-             GrpcToRest.convert_vectors(result.vectors) for result in response.result
 
-         ]
 
-         embeddings: List[List[float]] = [
 
-             result.get(self.vector_name)  # type: ignore
 
-             if isinstance(result, dict)
 
-             else result
 
-             for result in results
 
-         ]
 
-         mmr_selected: List[int] = maximal_marginal_relevance(
 
-             np.array(embedding),
 
-             embeddings,
 
-             k=k,
 
-             lambda_mult=lambda_mult,
 
-         )
 
-         return [
 
-             (
 
-                 self._document_from_scored_point_grpc(
 
-                     response.result[i],
 
-                     self.content_payload_key,
 
-                     self.metadata_payload_key,
 
-                 ),
 
-                 response.result[i].score,
 
-             )
 
-             for i in mmr_selected
 
-         ]
 
-     def delete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> Optional[bool]:
 
-         """Delete by vector ID or other criteria.
 
-         Args:
 
-             ids: List of ids to delete.
 
-             **kwargs: Other keyword arguments that subclasses might use.
 
-         Returns:
 
-             Optional[bool]: True if deletion is successful,
 
-             False otherwise, None if not implemented.
 
-         """
 
-         from qdrant_client.http import models as rest
 
-         result = self.client.delete(
 
-             collection_name=self.collection_name,
 
-             points_selector=ids,
 
-         )
 
-         return result.status == rest.UpdateStatus.COMPLETED
 
-     @classmethod
 
-     def from_texts(
 
-         cls: Type[Qdrant],
 
-         texts: List[str],
 
-         embedding: Embeddings,
 
-         metadatas: Optional[List[dict]] = None,
 
-         ids: Optional[Sequence[str]] = None,
 
-         location: Optional[str] = None,
 
-         url: Optional[str] = None,
 
-         port: Optional[int] = 6333,
 
-         grpc_port: int = 6334,
 
-         prefer_grpc: bool = False,
 
-         https: Optional[bool] = None,
 
-         api_key: Optional[str] = None,
 
-         prefix: Optional[str] = None,
 
-         timeout: Optional[float] = None,
 
-         host: Optional[str] = None,
 
-         path: Optional[str] = None,
 
-         collection_name: Optional[str] = None,
 
-         distance_func: str = "Cosine",
 
-         content_payload_key: str = CONTENT_KEY,
 
-         metadata_payload_key: str = METADATA_KEY,
 
-         group_payload_key: str = GROUP_KEY,
 
-         group_id: str = None,
 
-         vector_name: Optional[str] = VECTOR_NAME,
 
-         batch_size: int = 64,
 
-         shard_number: Optional[int] = None,
 
-         replication_factor: Optional[int] = None,
 
-         write_consistency_factor: Optional[int] = None,
 
-         on_disk_payload: Optional[bool] = None,
 
-         hnsw_config: Optional[common_types.HnswConfigDiff] = None,
 
-         optimizers_config: Optional[common_types.OptimizersConfigDiff] = None,
 
-         wal_config: Optional[common_types.WalConfigDiff] = None,
 
-         quantization_config: Optional[common_types.QuantizationConfig] = None,
 
-         init_from: Optional[common_types.InitFrom] = None,
 
-         force_recreate: bool = False,
 
-         **kwargs: Any,
 
-     ) -> Qdrant:
 
-         """Construct Qdrant wrapper from a list of texts.
 
-         Args:
 
-             texts: A list of texts to be indexed in Qdrant.
 
-             embedding: A subclass of `Embeddings`, responsible for text vectorization.
 
-             metadatas:
 
-                 An optional list of metadata. If provided it has to be of the same
 
-                 length as a list of texts.
 
-             ids:
 
-                 Optional list of ids to associate with the texts. Ids have to be
 
-                 uuid-like strings.
 
-             location:
 
-                 If `:memory:` - use in-memory Qdrant instance.
 
-                 If `str` - use it as a `url` parameter.
 
-                 If `None` - fallback to relying on `host` and `port` parameters.
 
-             url: either host or str of "Optional[scheme], host, Optional[port],
 
-                 Optional[prefix]". Default: `None`
 
-             port: Port of the REST API interface. Default: 6333
 
-             grpc_port: Port of the gRPC interface. Default: 6334
 
-             prefer_grpc:
 
-                 If true - use gPRC interface whenever possible in custom methods.
 
-                 Default: False
 
-             https: If true - use HTTPS(SSL) protocol. Default: None
 
-             api_key: API key for authentication in Qdrant Cloud. Default: None
 
-             prefix:
 
-                 If not None - add prefix to the REST URL path.
 
-                 Example: service/v1 will result in
 
-                     http://localhost:6333/service/v1/{qdrant-endpoint} for REST API.
 
-                 Default: None
 
-             timeout:
 
-                 Timeout for REST and gRPC API requests.
 
-                 Default: 5.0 seconds for REST and unlimited for gRPC
 
-             host:
 
-                 Host name of Qdrant service. If url and host are None, set to
 
-                 'localhost'. Default: None
 
-             path:
 
-                 Path in which the vectors will be stored while using local mode.
 
-                 Default: None
 
-             collection_name:
 
-                 Name of the Qdrant collection to be used. If not provided,
 
-                 it will be created randomly. Default: None
 
-             distance_func:
 
-                 Distance function. One of: "Cosine" / "Euclid" / "Dot".
 
-                 Default: "Cosine"
 
-             content_payload_key:
 
-                 A payload key used to store the content of the document.
 
-                 Default: "page_content"
 
-             metadata_payload_key:
 
-                 A payload key used to store the metadata of the document.
 
-                 Default: "metadata"
 
-             group_payload_key:
 
-                 A payload key used to store the content of the document.
 
-                 Default: "group_id"
 
-             group_id:
 
-                 collection group id
 
-             vector_name:
 
-                 Name of the vector to be used internally in Qdrant.
 
-                 Default: None
 
-             batch_size:
 
-                 How many vectors upload per-request.
 
-                 Default: 64
 
-             shard_number: Number of shards in collection. Default is 1, minimum is 1.
 
-             replication_factor:
 
-                 Replication factor for collection. Default is 1, minimum is 1.
 
-                 Defines how many copies of each shard will be created.
 
-                 Have effect only in distributed mode.
 
-             write_consistency_factor:
 
-                 Write consistency factor for collection. Default is 1, minimum is 1.
 
-                 Defines how many replicas should apply the operation for us to consider
 
-                 it successful. Increasing this number will make the collection more
 
-                 resilient to inconsistencies, but will also make it fail if not enough
 
-                 replicas are available.
 
-                 Does not have any performance impact.
 
-                 Have effect only in distributed mode.
 
-             on_disk_payload:
 
-                 If true - point`s payload will not be stored in memory.
 
-                 It will be read from the disk every time it is requested.
 
-                 This setting saves RAM by (slightly) increasing the response time.
 
-                 Note: those payload values that are involved in filtering and are
 
-                 indexed - remain in RAM.
 
-             hnsw_config: Params for HNSW index
 
-             optimizers_config: Params for optimizer
 
-             wal_config: Params for Write-Ahead-Log
 
-             quantization_config:
 
-                 Params for quantization, if None - quantization will be disabled
 
-             init_from:
 
-                 Use data stored in another collection to initialize this collection
 
-             force_recreate:
 
-                 Force recreating the collection
 
-             **kwargs:
 
-                 Additional arguments passed directly into REST client initialization
 
-         This is a user-friendly interface that:
 
-         1. Creates embeddings, one for each text
 
-         2. Initializes the Qdrant database as an in-memory docstore by default
 
-            (and overridable to a remote docstore)
 
-         3. Adds the text embeddings to the Qdrant database
 
-         This is intended to be a quick way to get started.
 
-         Example:
 
-             .. code-block:: python
 
-                 from langchain import Qdrant
 
-                 from langchain.embeddings import OpenAIEmbeddings
 
-                 embeddings = OpenAIEmbeddings()
 
-                 qdrant = Qdrant.from_texts(texts, embeddings, "localhost")
 
-         """
 
-         qdrant = cls._construct_instance(
 
-             texts,
 
-             embedding,
 
-             metadatas,
 
-             ids,
 
-             location,
 
-             url,
 
-             port,
 
-             grpc_port,
 
-             prefer_grpc,
 
-             https,
 
-             api_key,
 
-             prefix,
 
-             timeout,
 
-             host,
 
-             path,
 
-             collection_name,
 
-             distance_func,
 
-             content_payload_key,
 
-             metadata_payload_key,
 
-             group_payload_key,
 
-             group_id,
 
-             vector_name,
 
-             shard_number,
 
-             replication_factor,
 
-             write_consistency_factor,
 
-             on_disk_payload,
 
-             hnsw_config,
 
-             optimizers_config,
 
-             wal_config,
 
-             quantization_config,
 
-             init_from,
 
-             force_recreate,
 
-             **kwargs,
 
-         )
 
-         qdrant.add_texts(texts, metadatas, ids, batch_size)
 
-         return qdrant
 
-     @classmethod
 
-     @sync_call_fallback
 
-     async def afrom_texts(
 
-         cls: Type[Qdrant],
 
-         texts: List[str],
 
-         embedding: Embeddings,
 
-         metadatas: Optional[List[dict]] = None,
 
-         ids: Optional[Sequence[str]] = None,
 
-         location: Optional[str] = None,
 
-         url: Optional[str] = None,
 
-         port: Optional[int] = 6333,
 
-         grpc_port: int = 6334,
 
-         prefer_grpc: bool = False,
 
-         https: Optional[bool] = None,
 
-         api_key: Optional[str] = None,
 
-         prefix: Optional[str] = None,
 
-         timeout: Optional[float] = None,
 
-         host: Optional[str] = None,
 
-         path: Optional[str] = None,
 
-         collection_name: Optional[str] = None,
 
-         distance_func: str = "Cosine",
 
-         content_payload_key: str = CONTENT_KEY,
 
-         metadata_payload_key: str = METADATA_KEY,
 
-         vector_name: Optional[str] = VECTOR_NAME,
 
-         batch_size: int = 64,
 
-         shard_number: Optional[int] = None,
 
-         replication_factor: Optional[int] = None,
 
-         write_consistency_factor: Optional[int] = None,
 
-         on_disk_payload: Optional[bool] = None,
 
-         hnsw_config: Optional[common_types.HnswConfigDiff] = None,
 
-         optimizers_config: Optional[common_types.OptimizersConfigDiff] = None,
 
-         wal_config: Optional[common_types.WalConfigDiff] = None,
 
-         quantization_config: Optional[common_types.QuantizationConfig] = None,
 
-         init_from: Optional[common_types.InitFrom] = None,
 
-         force_recreate: bool = False,
 
-         **kwargs: Any,
 
-     ) -> Qdrant:
 
-         """Construct Qdrant wrapper from a list of texts.
 
-         Args:
 
-             texts: A list of texts to be indexed in Qdrant.
 
-             embedding: A subclass of `Embeddings`, responsible for text vectorization.
 
-             metadatas:
 
-                 An optional list of metadata. If provided it has to be of the same
 
-                 length as a list of texts.
 
-             ids:
 
-                 Optional list of ids to associate with the texts. Ids have to be
 
-                 uuid-like strings.
 
-             location:
 
-                 If `:memory:` - use in-memory Qdrant instance.
 
-                 If `str` - use it as a `url` parameter.
 
-                 If `None` - fallback to relying on `host` and `port` parameters.
 
-             url: either host or str of "Optional[scheme], host, Optional[port],
 
-                 Optional[prefix]". Default: `None`
 
-             port: Port of the REST API interface. Default: 6333
 
-             grpc_port: Port of the gRPC interface. Default: 6334
 
-             prefer_grpc:
 
-                 If true - use gPRC interface whenever possible in custom methods.
 
-                 Default: False
 
-             https: If true - use HTTPS(SSL) protocol. Default: None
 
-             api_key: API key for authentication in Qdrant Cloud. Default: None
 
-             prefix:
 
-                 If not None - add prefix to the REST URL path.
 
-                 Example: service/v1 will result in
 
-                     http://localhost:6333/service/v1/{qdrant-endpoint} for REST API.
 
-                 Default: None
 
-             timeout:
 
-                 Timeout for REST and gRPC API requests.
 
-                 Default: 5.0 seconds for REST and unlimited for gRPC
 
-             host:
 
-                 Host name of Qdrant service. If url and host are None, set to
 
-                 'localhost'. Default: None
 
-             path:
 
-                 Path in which the vectors will be stored while using local mode.
 
-                 Default: None
 
-             collection_name:
 
-                 Name of the Qdrant collection to be used. If not provided,
 
-                 it will be created randomly. Default: None
 
-             distance_func:
 
-                 Distance function. One of: "Cosine" / "Euclid" / "Dot".
 
-                 Default: "Cosine"
 
-             content_payload_key:
 
-                 A payload key used to store the content of the document.
 
-                 Default: "page_content"
 
-             metadata_payload_key:
 
-                 A payload key used to store the metadata of the document.
 
-                 Default: "metadata"
 
-             vector_name:
 
-                 Name of the vector to be used internally in Qdrant.
 
-                 Default: None
 
-             batch_size:
 
-                 How many vectors upload per-request.
 
-                 Default: 64
 
-             shard_number: Number of shards in collection. Default is 1, minimum is 1.
 
-             replication_factor:
 
-                 Replication factor for collection. Default is 1, minimum is 1.
 
-                 Defines how many copies of each shard will be created.
 
-                 Have effect only in distributed mode.
 
-             write_consistency_factor:
 
-                 Write consistency factor for collection. Default is 1, minimum is 1.
 
-                 Defines how many replicas should apply the operation for us to consider
 
-                 it successful. Increasing this number will make the collection more
 
-                 resilient to inconsistencies, but will also make it fail if not enough
 
-                 replicas are available.
 
-                 Does not have any performance impact.
 
-                 Have effect only in distributed mode.
 
-             on_disk_payload:
 
-                 If true - point`s payload will not be stored in memory.
 
-                 It will be read from the disk every time it is requested.
 
-                 This setting saves RAM by (slightly) increasing the response time.
 
-                 Note: those payload values that are involved in filtering and are
 
-                 indexed - remain in RAM.
 
-             hnsw_config: Params for HNSW index
 
-             optimizers_config: Params for optimizer
 
-             wal_config: Params for Write-Ahead-Log
 
-             quantization_config:
 
-                 Params for quantization, if None - quantization will be disabled
 
-             init_from:
 
-                 Use data stored in another collection to initialize this collection
 
-             force_recreate:
 
-                 Force recreating the collection
 
-             **kwargs:
 
-                 Additional arguments passed directly into REST client initialization
 
-         This is a user-friendly interface that:
 
-         1. Creates embeddings, one for each text
 
-         2. Initializes the Qdrant database as an in-memory docstore by default
 
-            (and overridable to a remote docstore)
 
-         3. Adds the text embeddings to the Qdrant database
 
-         This is intended to be a quick way to get started.
 
-         Example:
 
-             .. code-block:: python
 
-                 from langchain import Qdrant
 
-                 from langchain.embeddings import OpenAIEmbeddings
 
-                 embeddings = OpenAIEmbeddings()
 
-                 qdrant = await Qdrant.afrom_texts(texts, embeddings, "localhost")
 
-         """
 
-         qdrant = cls._construct_instance(
 
-             texts,
 
-             embedding,
 
-             metadatas,
 
-             ids,
 
-             location,
 
-             url,
 
-             port,
 
-             grpc_port,
 
-             prefer_grpc,
 
-             https,
 
-             api_key,
 
-             prefix,
 
-             timeout,
 
-             host,
 
-             path,
 
-             collection_name,
 
-             distance_func,
 
-             content_payload_key,
 
-             metadata_payload_key,
 
-             vector_name,
 
-             shard_number,
 
-             replication_factor,
 
-             write_consistency_factor,
 
-             on_disk_payload,
 
-             hnsw_config,
 
-             optimizers_config,
 
-             wal_config,
 
-             quantization_config,
 
-             init_from,
 
-             force_recreate,
 
-             **kwargs,
 
-         )
 
-         await qdrant.aadd_texts(texts, metadatas, ids, batch_size)
 
-         return qdrant
 
-     @classmethod
 
-     def _construct_instance(
 
-         cls: Type[Qdrant],
 
-         texts: List[str],
 
-         embedding: Embeddings,
 
-         metadatas: Optional[List[dict]] = None,
 
-         ids: Optional[Sequence[str]] = None,
 
-         location: Optional[str] = None,
 
-         url: Optional[str] = None,
 
-         port: Optional[int] = 6333,
 
-         grpc_port: int = 6334,
 
-         prefer_grpc: bool = False,
 
-         https: Optional[bool] = None,
 
-         api_key: Optional[str] = None,
 
-         prefix: Optional[str] = None,
 
-         timeout: Optional[float] = None,
 
-         host: Optional[str] = None,
 
-         path: Optional[str] = None,
 
-         collection_name: Optional[str] = None,
 
-         distance_func: str = "Cosine",
 
-         content_payload_key: str = CONTENT_KEY,
 
-         metadata_payload_key: str = METADATA_KEY,
 
-         group_payload_key: str = GROUP_KEY,
 
-         group_id: str = None,
 
-         vector_name: Optional[str] = VECTOR_NAME,
 
-         shard_number: Optional[int] = None,
 
-         replication_factor: Optional[int] = None,
 
-         write_consistency_factor: Optional[int] = None,
 
-         on_disk_payload: Optional[bool] = None,
 
-         hnsw_config: Optional[common_types.HnswConfigDiff] = None,
 
-         optimizers_config: Optional[common_types.OptimizersConfigDiff] = None,
 
-         wal_config: Optional[common_types.WalConfigDiff] = None,
 
-         quantization_config: Optional[common_types.QuantizationConfig] = None,
 
-         init_from: Optional[common_types.InitFrom] = None,
 
-         force_recreate: bool = False,
 
-         **kwargs: Any,
 
-     ) -> Qdrant:
 
-         try:
 
-             import qdrant_client
 
-         except ImportError:
 
-             raise ValueError(
 
-                 "Could not import qdrant-client python package. "
 
-                 "Please install it with `pip install qdrant-client`."
 
-             )
 
-         from grpc import RpcError
 
-         from qdrant_client.http import models as rest
 
-         from qdrant_client.http.exceptions import UnexpectedResponse
 
-         # Just do a single quick embedding to get vector size
 
-         partial_embeddings = embedding.embed_documents(texts[:1])
 
-         vector_size = len(partial_embeddings[0])
 
-         collection_name = collection_name or uuid.uuid4().hex
 
-         distance_func = distance_func.upper()
 
-         is_new_collection = False
 
-         client = qdrant_client.QdrantClient(
 
-             location=location,
 
-             url=url,
 
-             port=port,
 
-             grpc_port=grpc_port,
 
-             prefer_grpc=prefer_grpc,
 
-             https=https,
 
-             api_key=api_key,
 
-             prefix=prefix,
 
-             timeout=timeout,
 
-             host=host,
 
-             path=path,
 
-             **kwargs,
 
-         )
 
-         all_collection_name = []
 
-         collections_response = client.get_collections()
 
-         collection_list = collections_response.collections
 
-         for collection in collection_list:
 
-             all_collection_name.append(collection.name)
 
-         if collection_name not in all_collection_name:
 
-             vectors_config = rest.VectorParams(
 
-                 size=vector_size,
 
-                 distance=rest.Distance[distance_func],
 
-             )
 
-             # If vector name was provided, we're going to use the named vectors feature
 
-             # with just a single vector.
 
-             if vector_name is not None:
 
-                 vectors_config = {  # type: ignore[assignment]
 
-                     vector_name: vectors_config,
 
-                 }
 
-             client.recreate_collection(
 
-                 collection_name=collection_name,
 
-                 vectors_config=vectors_config,
 
-                 shard_number=shard_number,
 
-                 replication_factor=replication_factor,
 
-                 write_consistency_factor=write_consistency_factor,
 
-                 on_disk_payload=on_disk_payload,
 
-                 hnsw_config=hnsw_config,
 
-                 optimizers_config=optimizers_config,
 
-                 wal_config=wal_config,
 
-                 quantization_config=quantization_config,
 
-                 init_from=init_from,
 
-                 timeout=timeout,  # type: ignore[arg-type]
 
-             )
 
-             is_new_collection = True
 
-         if force_recreate:
 
-             raise ValueError
 
-         # Get the vector configuration of the existing collection and vector, if it
 
-         # was specified. If the old configuration does not match the current one,
 
-         # an exception is being thrown.
 
-         collection_info = client.get_collection(collection_name=collection_name)
 
-         current_vector_config = collection_info.config.params.vectors
 
-         if isinstance(current_vector_config, dict) and vector_name is not None:
 
-             if vector_name not in current_vector_config:
 
-                 raise QdrantException(
 
-                     f"Existing Qdrant collection {collection_name} does not "
 
-                     f"contain vector named {vector_name}. Did you mean one of the "
 
-                     f"existing vectors: {', '.join(current_vector_config.keys())}? "
 
-                     f"If you want to recreate the collection, set `force_recreate` "
 
-                     f"parameter to `True`."
 
-                 )
 
-             current_vector_config = current_vector_config.get(
 
-                 vector_name
 
-             )  # type: ignore[assignment]
 
-         elif isinstance(current_vector_config, dict) and vector_name is None:
 
-             raise QdrantException(
 
-                 f"Existing Qdrant collection {collection_name} uses named vectors. "
 
-                 f"If you want to reuse it, please set `vector_name` to any of the "
 
-                 f"existing named vectors: "
 
-                 f"{', '.join(current_vector_config.keys())}."  # noqa
 
-                 f"If you want to recreate the collection, set `force_recreate` "
 
-                 f"parameter to `True`."
 
-             )
 
-         elif (
 
-                 not isinstance(current_vector_config, dict) and vector_name is not None
 
-         ):
 
-             raise QdrantException(
 
-                 f"Existing Qdrant collection {collection_name} doesn't use named "
 
-                 f"vectors. If you want to reuse it, please set `vector_name` to "
 
-                 f"`None`. If you want to recreate the collection, set "
 
-                 f"`force_recreate` parameter to `True`."
 
-             )
 
-         # Check if the vector configuration has the same dimensionality.
 
-         if current_vector_config.size != vector_size:  # type: ignore[union-attr]
 
-             raise QdrantException(
 
-                 f"Existing Qdrant collection is configured for vectors with "
 
-                 f"{current_vector_config.size} "  # type: ignore[union-attr]
 
-                 f"dimensions. Selected embeddings are {vector_size}-dimensional. "
 
-                 f"If you want to recreate the collection, set `force_recreate` "
 
-                 f"parameter to `True`."
 
-             )
 
-         current_distance_func = (
 
-             current_vector_config.distance.name.upper()  # type: ignore[union-attr]
 
-         )
 
-         if current_distance_func != distance_func:
 
-             raise QdrantException(
 
-                 f"Existing Qdrant collection is configured for "
 
-                 f"{current_vector_config.distance} "  # type: ignore[union-attr]
 
-                 f"similarity. Please set `distance_func` parameter to "
 
-                 f"`{distance_func}` if you want to reuse it. If you want to "
 
-                 f"recreate the collection, set `force_recreate` parameter to "
 
-                 f"`True`."
 
-             )
 
-         qdrant = cls(
 
-             client=client,
 
-             collection_name=collection_name,
 
-             embeddings=embedding,
 
-             content_payload_key=content_payload_key,
 
-             metadata_payload_key=metadata_payload_key,
 
-             distance_strategy=distance_func,
 
-             vector_name=vector_name,
 
-             group_id=group_id,
 
-             group_payload_key=group_payload_key,
 
-             is_new_collection=is_new_collection
 
-         )
 
-         return qdrant
 
-     def _select_relevance_score_fn(self) -> Callable[[float], float]:
 
-         """
 
-         The 'correct' relevance function
 
-         may differ depending on a few things, including:
 
-         - the distance / similarity metric used by the VectorStore
 
-         - the scale of your embeddings (OpenAI's are unit normed. Many others are not!)
 
-         - embedding dimensionality
 
-         - etc.
 
-         """
 
-         if self.distance_strategy == "COSINE":
 
-             return self._cosine_relevance_score_fn
 
-         elif self.distance_strategy == "DOT":
 
-             return self._max_inner_product_relevance_score_fn
 
-         elif self.distance_strategy == "EUCLID":
 
-             return self._euclidean_relevance_score_fn
 
-         else:
 
-             raise ValueError(
 
-                 "Unknown distance strategy, must be cosine, "
 
-                 "max_inner_product, or euclidean"
 
-             )
 
-     def _similarity_search_with_relevance_scores(
 
-         self,
 
-         query: str,
 
-         k: int = 4,
 
-         **kwargs: Any,
 
-     ) -> List[Tuple[Document, float]]:
 
-         """Return docs and relevance scores in the range [0, 1].
 
-         0 is dissimilar, 1 is most similar.
 
-         Args:
 
-             query: input text
 
-             k: Number of Documents to return. Defaults to 4.
 
-             **kwargs: kwargs to be passed to similarity search. Should include:
 
-                 score_threshold: Optional, a floating point value between 0 to 1 to
 
-                     filter the resulting set of retrieved docs
 
-         Returns:
 
-             List of Tuples of (doc, similarity_score)
 
-         """
 
-         return self.similarity_search_with_score(query, k, **kwargs)
 
-     @classmethod
 
-     def _build_payloads(
 
-         cls,
 
-         texts: Iterable[str],
 
-         metadatas: Optional[List[dict]],
 
-         content_payload_key: str,
 
-         metadata_payload_key: str,
 
-         group_id: str,
 
-         group_payload_key: str
 
-     ) -> List[dict]:
 
-         payloads = []
 
-         for i, text in enumerate(texts):
 
-             if text is None:
 
-                 raise ValueError(
 
-                     "At least one of the texts is None. Please remove it before "
 
-                     "calling .from_texts or .add_texts on Qdrant instance."
 
-                 )
 
-             metadata = metadatas[i] if metadatas is not None else None
 
-             payloads.append(
 
-                 {
 
-                     content_payload_key: text,
 
-                     metadata_payload_key: metadata,
 
-                     group_payload_key: group_id
 
-                 }
 
-             )
 
-         return payloads
 
-     @classmethod
 
-     def _document_from_scored_point(
 
-         cls,
 
-         scored_point: Any,
 
-         content_payload_key: str,
 
-         metadata_payload_key: str,
 
-     ) -> Document:
 
-         return Document(
 
-             page_content=scored_point.payload.get(content_payload_key),
 
-             metadata=scored_point.payload.get(metadata_payload_key) or {},
 
-         )
 
-     @classmethod
 
-     def _document_from_scored_point_grpc(
 
-         cls,
 
-         scored_point: Any,
 
-         content_payload_key: str,
 
-         metadata_payload_key: str,
 
-     ) -> Document:
 
-         from qdrant_client.conversions.conversion import grpc_to_payload
 
-         payload = grpc_to_payload(scored_point.payload)
 
-         return Document(
 
-             page_content=payload[content_payload_key],
 
-             metadata=payload.get(metadata_payload_key) or {},
 
-         )
 
-     def _build_condition(self, key: str, value: Any) -> List[rest.FieldCondition]:
 
-         from qdrant_client.http import models as rest
 
-         out = []
 
-         if isinstance(value, dict):
 
-             for _key, value in value.items():
 
-                 out.extend(self._build_condition(f"{key}.{_key}", value))
 
-         elif isinstance(value, list):
 
-             for _value in value:
 
-                 if isinstance(_value, dict):
 
-                     out.extend(self._build_condition(f"{key}[]", _value))
 
-                 else:
 
-                     out.extend(self._build_condition(f"{key}", _value))
 
-         else:
 
-             out.append(
 
-                 rest.FieldCondition(
 
-                     key=key,
 
-                     match=rest.MatchValue(value=value),
 
-                 )
 
-             )
 
-         return out
 
-     def _qdrant_filter_from_dict(
 
-         self, filter: Optional[DictFilter]
 
-     ) -> Optional[rest.Filter]:
 
-         from qdrant_client.http import models as rest
 
-         if not filter:
 
-             return None
 
-         return rest.Filter(
 
-             must=[
 
-                 condition
 
-                 for key, value in filter.items()
 
-                 for condition in self._build_condition(key, value)
 
-             ]
 
-         )
 
-     def _embed_query(self, query: str) -> List[float]:
 
-         """Embed query text.
 
-         Used to provide backward compatibility with `embedding_function` argument.
 
-         Args:
 
-             query: Query text.
 
-         Returns:
 
-             List of floats representing the query embedding.
 
-         """
 
-         if self.embeddings is not None:
 
-             embedding = self.embeddings.embed_query(query)
 
-         else:
 
-             if self._embeddings_function is not None:
 
-                 embedding = self._embeddings_function(query)
 
-             else:
 
-                 raise ValueError("Neither of embeddings or embedding_function is set")
 
-         return embedding.tolist() if hasattr(embedding, "tolist") else embedding
 
-     def _embed_texts(self, texts: Iterable[str]) -> List[List[float]]:
 
-         """Embed search texts.
 
-         Used to provide backward compatibility with `embedding_function` argument.
 
-         Args:
 
-             texts: Iterable of texts to embed.
 
-         Returns:
 
-             List of floats representing the texts embedding.
 
-         """
 
-         if self.embeddings is not None:
 
-             embeddings = self.embeddings.embed_documents(list(texts))
 
-             if hasattr(embeddings, "tolist"):
 
-                 embeddings = embeddings.tolist()
 
-         elif self._embeddings_function is not None:
 
-             embeddings = []
 
-             for text in texts:
 
-                 embedding = self._embeddings_function(text)
 
-                 if hasattr(embeddings, "tolist"):
 
-                     embedding = embedding.tolist()
 
-                 embeddings.append(embedding)
 
-         else:
 
-             raise ValueError("Neither of embeddings or embedding_function is set")
 
-         return embeddings
 
-     def _generate_rest_batches(
 
-         self,
 
-         texts: Iterable[str],
 
-         metadatas: Optional[List[dict]] = None,
 
-         ids: Optional[Sequence[str]] = None,
 
-         batch_size: int = 64,
 
-         group_id: Optional[str] = None,
 
-     ) -> Generator[Tuple[List[str], List[rest.PointStruct]], None, None]:
 
-         from qdrant_client.http import models as rest
 
-         texts_iterator = iter(texts)
 
-         metadatas_iterator = iter(metadatas or [])
 
-         ids_iterator = iter(ids or [uuid.uuid4().hex for _ in iter(texts)])
 
-         while batch_texts := list(islice(texts_iterator, batch_size)):
 
-             # Take the corresponding metadata and id for each text in a batch
 
-             batch_metadatas = list(islice(metadatas_iterator, batch_size)) or None
 
-             batch_ids = list(islice(ids_iterator, batch_size))
 
-             # Generate the embeddings for all the texts in a batch
 
-             batch_embeddings = self._embed_texts(batch_texts)
 
-             points = [
 
-                 rest.PointStruct(
 
-                     id=point_id,
 
-                     vector=vector
 
-                     if self.vector_name is None
 
-                     else {self.vector_name: vector},
 
-                     payload=payload,
 
-                 )
 
-                 for point_id, vector, payload in zip(
 
-                     batch_ids,
 
-                     batch_embeddings,
 
-                     self._build_payloads(
 
-                         batch_texts,
 
-                         batch_metadatas,
 
-                         self.content_payload_key,
 
-                         self.metadata_payload_key,
 
-                         self.group_id,
 
-                         self.group_payload_key
 
-                     ),
 
-                 )
 
-             ]
 
-             yield batch_ids, points
 
 
  |