| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556 | 
							- import json
 
- from flask import current_app
 
- from langchain.embeddings import OpenAIEmbeddings
 
- from core.embedding.cached_embedding import CacheEmbedding
 
- from core.index.keyword_table_index.keyword_table_index import KeywordTableIndex, KeywordTableConfig
 
- from core.index.vector_index.vector_index import VectorIndex
 
- from core.model_providers.model_factory import ModelFactory
 
- from core.model_providers.models.embedding.openai_embedding import OpenAIEmbedding
 
- from core.model_providers.models.entity.model_params import ModelKwargs
 
- from core.model_providers.models.llm.openai_model import OpenAIModel
 
- from core.model_providers.providers.openai_provider import OpenAIProvider
 
- from models.dataset import Dataset
 
- from models.provider import Provider, ProviderType
 
- class IndexBuilder:
 
-     @classmethod
 
-     def get_index(cls, dataset: Dataset, indexing_technique: str, ignore_high_quality_check: bool = False):
 
-         if indexing_technique == "high_quality":
 
-             if not ignore_high_quality_check and dataset.indexing_technique != 'high_quality':
 
-                 return None
 
-             embedding_model = ModelFactory.get_embedding_model(
 
-                 tenant_id=dataset.tenant_id,
 
-                 model_provider_name=dataset.embedding_model_provider,
 
-                 model_name=dataset.embedding_model
 
-             )
 
-             embeddings = CacheEmbedding(embedding_model)
 
-             return VectorIndex(
 
-                 dataset=dataset,
 
-                 config=current_app.config,
 
-                 embeddings=embeddings
 
-             )
 
-         elif indexing_technique == "economy":
 
-             return KeywordTableIndex(
 
-                 dataset=dataset,
 
-                 config=KeywordTableConfig(
 
-                     max_keywords_per_chunk=10
 
-                 )
 
-             )
 
-         else:
 
-             raise ValueError('Unknown indexing technique')
 
-     @classmethod
 
-     def get_default_high_quality_index(cls, dataset: Dataset):
 
-         embeddings = OpenAIEmbeddings(openai_api_key=' ')
 
-         return VectorIndex(
 
-             dataset=dataset,
 
-             config=current_app.config,
 
-             embeddings=embeddings
 
-         )
 
 
  |