| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734 | import datetimeimport jsonimport mathimport randomimport stringimport threadingimport timeimport uuidimport clickfrom tqdm import tqdmfrom flask import current_app, Flaskfrom langchain.embeddings import OpenAIEmbeddingsfrom werkzeug.exceptions import NotFoundfrom core.embedding.cached_embedding import CacheEmbeddingfrom core.index.index import IndexBuilderfrom core.model_providers.model_factory import ModelFactoryfrom core.model_providers.models.embedding.openai_embedding import OpenAIEmbeddingfrom core.model_providers.models.entity.model_params import ModelTypefrom core.model_providers.providers.hosted import hosted_model_providersfrom core.model_providers.providers.openai_provider import OpenAIProviderfrom libs.password import password_pattern, valid_password, hash_passwordfrom libs.helper import email as email_validatefrom extensions.ext_database import dbfrom libs.rsa import generate_key_pairfrom models.account import InvitationCode, Tenant, TenantAccountJoinfrom models.dataset import Dataset, DatasetQuery, Document, DatasetCollectionBindingfrom models.model import Account, AppModelConfig, Appimport secretsimport base64from models.provider import Provider, ProviderType, ProviderQuotaType, ProviderModel@click.command('reset-password', help='Reset the account password.')@click.option('--email', prompt=True, help='The email address of the account whose password you need to reset')@click.option('--new-password', prompt=True, help='the new password.')@click.option('--password-confirm', prompt=True, help='the new password confirm.')def reset_password(email, new_password, password_confirm):    if str(new_password).strip() != str(password_confirm).strip():        click.echo(click.style('sorry. The two passwords do not match.', fg='red'))        return    account = db.session.query(Account). \        filter(Account.email == email). \        one_or_none()    if not account:        click.echo(click.style('sorry. the account: [{}] not exist .'.format(email), fg='red'))        return    try:        valid_password(new_password)    except:        click.echo(            click.style('sorry. The passwords must match {} '.format(password_pattern), fg='red'))        return    # generate password salt    salt = secrets.token_bytes(16)    base64_salt = base64.b64encode(salt).decode()    # encrypt password with salt    password_hashed = hash_password(new_password, salt)    base64_password_hashed = base64.b64encode(password_hashed).decode()    account.password = base64_password_hashed    account.password_salt = base64_salt    db.session.commit()    click.echo(click.style('Congratulations!, password has been reset.', fg='green'))@click.command('reset-email', help='Reset the account email.')@click.option('--email', prompt=True, help='The old email address of the account whose email you need to reset')@click.option('--new-email', prompt=True, help='the new email.')@click.option('--email-confirm', prompt=True, help='the new email confirm.')def reset_email(email, new_email, email_confirm):    if str(new_email).strip() != str(email_confirm).strip():        click.echo(click.style('Sorry, new email and confirm email do not match.', fg='red'))        return    account = db.session.query(Account). \        filter(Account.email == email). \        one_or_none()    if not account:        click.echo(click.style('sorry. the account: [{}] not exist .'.format(email), fg='red'))        return    try:        email_validate(new_email)    except:        click.echo(            click.style('sorry. {} is not a valid email. '.format(email), fg='red'))        return    account.email = new_email    db.session.commit()    click.echo(click.style('Congratulations!, email has been reset.', fg='green'))@click.command('reset-encrypt-key-pair', help='Reset the asymmetric key pair of workspace for encrypt LLM credentials. '                                              'After the reset, all LLM credentials will become invalid, '                                              'requiring re-entry.'                                              'Only support SELF_HOSTED mode.')@click.confirmation_option(prompt=click.style('Are you sure you want to reset encrypt key pair?'                                              ' this operation cannot be rolled back!', fg='red'))def reset_encrypt_key_pair():    if current_app.config['EDITION'] != 'SELF_HOSTED':        click.echo(click.style('Sorry, only support SELF_HOSTED mode.', fg='red'))        return    tenant = db.session.query(Tenant).first()    if not tenant:        click.echo(click.style('Sorry, no workspace found. Please enter /install to initialize.', fg='red'))        return    tenant.encrypt_public_key = generate_key_pair(tenant.id)    db.session.query(Provider).filter(Provider.provider_type == 'custom').delete()    db.session.query(ProviderModel).delete()    db.session.commit()    click.echo(click.style('Congratulations! '                           'the asymmetric key pair of workspace {} has been reset.'.format(tenant.id), fg='green'))@click.command('generate-invitation-codes', help='Generate invitation codes.')@click.option('--batch', help='The batch of invitation codes.')@click.option('--count', prompt=True, help='Invitation codes count.')def generate_invitation_codes(batch, count):    if not batch:        now = datetime.datetime.now()        batch = now.strftime('%Y%m%d%H%M%S')    if not count or int(count) <= 0:        click.echo(click.style('sorry. the count must be greater than 0.', fg='red'))        return    count = int(count)    click.echo('Start generate {} invitation codes for batch {}.'.format(count, batch))    codes = ''    for i in range(count):        code = generate_invitation_code()        invitation_code = InvitationCode(            code=code,            batch=batch        )        db.session.add(invitation_code)        click.echo(code)        codes += code + "\n"    db.session.commit()    filename = 'storage/invitation-codes-{}.txt'.format(batch)    with open(filename, 'w') as f:        f.write(codes)    click.echo(click.style(        'Congratulations! Generated {} invitation codes for batch {} and saved to the file \'{}\''.format(count, batch,                                                                                                          filename),        fg='green'))def generate_invitation_code():    code = generate_upper_string()    while db.session.query(InvitationCode).filter(InvitationCode.code == code).count() > 0:        code = generate_upper_string()    return codedef generate_upper_string():    letters_digits = string.ascii_uppercase + string.digits    result = ""    for i in range(8):        result += random.choice(letters_digits)    return result@click.command('recreate-all-dataset-indexes', help='Recreate all dataset indexes.')def recreate_all_dataset_indexes():    click.echo(click.style('Start recreate all dataset indexes.', fg='green'))    recreate_count = 0    page = 1    while True:        try:            datasets = db.session.query(Dataset).filter(Dataset.indexing_technique == 'high_quality') \                .order_by(Dataset.created_at.desc()).paginate(page=page, per_page=50)        except NotFound:            break        page += 1        for dataset in datasets:            try:                click.echo('Recreating dataset index: {}'.format(dataset.id))                index = IndexBuilder.get_index(dataset, 'high_quality')                if index and index._is_origin():                    index.recreate_dataset(dataset)                    recreate_count += 1                else:                    click.echo('passed.')            except Exception as e:                click.echo(                    click.style('Recreate dataset index error: {} {}'.format(e.__class__.__name__, str(e)), fg='red'))                continue    click.echo(click.style('Congratulations! Recreate {} dataset indexes.'.format(recreate_count), fg='green'))@click.command('clean-unused-dataset-indexes', help='Clean unused dataset indexes.')def clean_unused_dataset_indexes():    click.echo(click.style('Start clean unused dataset indexes.', fg='green'))    clean_days = int(current_app.config.get('CLEAN_DAY_SETTING'))    start_at = time.perf_counter()    thirty_days_ago = datetime.datetime.now() - datetime.timedelta(days=clean_days)    page = 1    while True:        try:            datasets = db.session.query(Dataset).filter(Dataset.created_at < thirty_days_ago) \                .order_by(Dataset.created_at.desc()).paginate(page=page, per_page=50)        except NotFound:            break        page += 1        for dataset in datasets:            dataset_query = db.session.query(DatasetQuery).filter(                DatasetQuery.created_at > thirty_days_ago,                DatasetQuery.dataset_id == dataset.id            ).all()            if not dataset_query or len(dataset_query) == 0:                documents = db.session.query(Document).filter(                    Document.dataset_id == dataset.id,                    Document.indexing_status == 'completed',                    Document.enabled == True,                    Document.archived == False,                    Document.updated_at > thirty_days_ago                ).all()                if not documents or len(documents) == 0:                    try:                        # remove index                        vector_index = IndexBuilder.get_index(dataset, 'high_quality')                        kw_index = IndexBuilder.get_index(dataset, 'economy')                        # delete from vector index                        if vector_index:                            if dataset.collection_binding_id:                                vector_index.delete_by_group_id(dataset.id)                            else:                                if dataset.collection_binding_id:                                    vector_index.delete_by_group_id(dataset.id)                                else:                                    vector_index.delete()                        kw_index.delete()                        # update document                        update_params = {                            Document.enabled: False                        }                        Document.query.filter_by(dataset_id=dataset.id).update(update_params)                        db.session.commit()                        click.echo(click.style('Cleaned unused dataset {} from db success!'.format(dataset.id),                                               fg='green'))                    except Exception as e:                        click.echo(                            click.style('clean dataset index error: {} {}'.format(e.__class__.__name__, str(e)),                                        fg='red'))    end_at = time.perf_counter()    click.echo(click.style('Cleaned unused dataset from db success latency: {}'.format(end_at - start_at), fg='green'))@click.command('sync-anthropic-hosted-providers', help='Sync anthropic hosted providers.')def sync_anthropic_hosted_providers():    if not hosted_model_providers.anthropic:        click.echo(click.style('Anthropic hosted provider is not configured.', fg='red'))        return    click.echo(click.style('Start sync anthropic hosted providers.', fg='green'))    count = 0    new_quota_limit = hosted_model_providers.anthropic.quota_limit    page = 1    while True:        try:            providers = db.session.query(Provider).filter(                Provider.provider_name == 'anthropic',                Provider.provider_type == ProviderType.SYSTEM.value,                Provider.quota_type == ProviderQuotaType.TRIAL.value,                Provider.quota_limit != new_quota_limit            ).order_by(Provider.created_at.desc()).paginate(page=page, per_page=100)        except NotFound:            break        page += 1        for provider in providers:            try:                click.echo('Syncing tenant anthropic hosted provider: {}, origin: limit {}, used {}'                           .format(provider.tenant_id, provider.quota_limit, provider.quota_used))                original_quota_limit = provider.quota_limit                division = math.ceil(new_quota_limit / 1000)                provider.quota_limit = new_quota_limit if original_quota_limit == 1000 \                    else original_quota_limit * division                provider.quota_used = division * provider.quota_used                db.session.commit()                count += 1            except Exception as e:                click.echo(click.style(                    'Sync tenant anthropic hosted provider error: {} {}'.format(e.__class__.__name__, str(e)),                    fg='red'))                continue    click.echo(click.style('Congratulations! Synced {} anthropic hosted providers.'.format(count), fg='green'))@click.command('create-qdrant-indexes', help='Create qdrant indexes.')def create_qdrant_indexes():    click.echo(click.style('Start create qdrant indexes.', fg='green'))    create_count = 0    page = 1    while True:        try:            datasets = db.session.query(Dataset).filter(Dataset.indexing_technique == 'high_quality') \                .order_by(Dataset.created_at.desc()).paginate(page=page, per_page=50)        except NotFound:            break        page += 1        for dataset in datasets:            if dataset.index_struct_dict:                if dataset.index_struct_dict['type'] != 'qdrant':                    try:                        click.echo('Create dataset qdrant index: {}'.format(dataset.id))                        try:                            embedding_model = ModelFactory.get_embedding_model(                                tenant_id=dataset.tenant_id,                                model_provider_name=dataset.embedding_model_provider,                                model_name=dataset.embedding_model                            )                        except Exception:                            try:                                embedding_model = ModelFactory.get_embedding_model(                                    tenant_id=dataset.tenant_id                                )                                dataset.embedding_model = embedding_model.name                                dataset.embedding_model_provider = embedding_model.model_provider.provider_name                            except Exception:                                provider = Provider(                                    id='provider_id',                                    tenant_id=dataset.tenant_id,                                    provider_name='openai',                                    provider_type=ProviderType.SYSTEM.value,                                    encrypted_config=json.dumps({'openai_api_key': 'TEST'}),                                    is_valid=True,                                )                                model_provider = OpenAIProvider(provider=provider)                                embedding_model = OpenAIEmbedding(name="text-embedding-ada-002",                                                                  model_provider=model_provider)                        embeddings = CacheEmbedding(embedding_model)                        from core.index.vector_index.qdrant_vector_index import QdrantVectorIndex, QdrantConfig                        index = QdrantVectorIndex(                            dataset=dataset,                            config=QdrantConfig(                                endpoint=current_app.config.get('QDRANT_URL'),                                api_key=current_app.config.get('QDRANT_API_KEY'),                                root_path=current_app.root_path                            ),                            embeddings=embeddings                        )                        if index:                            index.create_qdrant_dataset(dataset)                            index_struct = {                                "type": 'qdrant',                                "vector_store": {                                    "class_prefix": dataset.index_struct_dict['vector_store']['class_prefix']}                            }                            dataset.index_struct = json.dumps(index_struct)                            db.session.commit()                            create_count += 1                        else:                            click.echo('passed.')                    except Exception as e:                        click.echo(                            click.style('Create dataset index error: {} {}'.format(e.__class__.__name__, str(e)),                                        fg='red'))                        continue    click.echo(click.style('Congratulations! Create {} dataset indexes.'.format(create_count), fg='green'))@click.command('update-qdrant-indexes', help='Update qdrant indexes.')def update_qdrant_indexes():    click.echo(click.style('Start Update qdrant indexes.', fg='green'))    create_count = 0    page = 1    while True:        try:            datasets = db.session.query(Dataset).filter(Dataset.indexing_technique == 'high_quality') \                .order_by(Dataset.created_at.desc()).paginate(page=page, per_page=50)        except NotFound:            break        page += 1        for dataset in datasets:            if dataset.index_struct_dict:                if dataset.index_struct_dict['type'] != 'qdrant':                    try:                        click.echo('Update dataset qdrant index: {}'.format(dataset.id))                        try:                            embedding_model = ModelFactory.get_embedding_model(                                tenant_id=dataset.tenant_id,                                model_provider_name=dataset.embedding_model_provider,                                model_name=dataset.embedding_model                            )                        except Exception:                            provider = Provider(                                id='provider_id',                                tenant_id=dataset.tenant_id,                                provider_name='openai',                                provider_type=ProviderType.CUSTOM.value,                                encrypted_config=json.dumps({'openai_api_key': 'TEST'}),                                is_valid=True,                            )                            model_provider = OpenAIProvider(provider=provider)                            embedding_model = OpenAIEmbedding(name="text-embedding-ada-002",                                                              model_provider=model_provider)                        embeddings = CacheEmbedding(embedding_model)                        from core.index.vector_index.qdrant_vector_index import QdrantVectorIndex, QdrantConfig                        index = QdrantVectorIndex(                            dataset=dataset,                            config=QdrantConfig(                                endpoint=current_app.config.get('QDRANT_URL'),                                api_key=current_app.config.get('QDRANT_API_KEY'),                                root_path=current_app.root_path                            ),                            embeddings=embeddings                        )                        if index:                            index.update_qdrant_dataset(dataset)                            create_count += 1                        else:                            click.echo('passed.')                    except Exception as e:                        click.echo(                            click.style('Create dataset index error: {} {}'.format(e.__class__.__name__, str(e)),                                        fg='red'))                        continue    click.echo(click.style('Congratulations! Update {} dataset indexes.'.format(create_count), fg='green'))@click.command('normalization-collections', help='restore all collections in one')def normalization_collections():    click.echo(click.style('Start normalization collections.', fg='green'))    normalization_count = []    page = 1    while True:        try:            datasets = db.session.query(Dataset).filter(Dataset.indexing_technique == 'high_quality') \                .order_by(Dataset.created_at.desc()).paginate(page=page, per_page=100)        except NotFound:            break        datasets_result = datasets.items        page += 1        for i in range(0, len(datasets_result), 5):            threads = []            sub_datasets = datasets_result[i:i + 5]            for dataset in sub_datasets:                document_format_thread = threading.Thread(target=deal_dataset_vector, kwargs={                    'flask_app': current_app._get_current_object(),                    'dataset': dataset,                    'normalization_count': normalization_count                })                threads.append(document_format_thread)                document_format_thread.start()            for thread in threads:                thread.join()    click.echo(click.style('Congratulations! restore {} dataset indexes.'.format(len(normalization_count)), fg='green'))def deal_dataset_vector(flask_app: Flask, dataset: Dataset, normalization_count: list):    with flask_app.app_context():        try:            click.echo('restore dataset index: {}'.format(dataset.id))            try:                embedding_model = ModelFactory.get_embedding_model(                    tenant_id=dataset.tenant_id,                    model_provider_name=dataset.embedding_model_provider,                    model_name=dataset.embedding_model                )            except Exception:                provider = Provider(                    id='provider_id',                    tenant_id=dataset.tenant_id,                    provider_name='openai',                    provider_type=ProviderType.CUSTOM.value,                    encrypted_config=json.dumps({'openai_api_key': 'TEST'}),                    is_valid=True,                )                model_provider = OpenAIProvider(provider=provider)                embedding_model = OpenAIEmbedding(name="text-embedding-ada-002",                                                  model_provider=model_provider)            embeddings = CacheEmbedding(embedding_model)            dataset_collection_binding = db.session.query(DatasetCollectionBinding). \                filter(DatasetCollectionBinding.provider_name == embedding_model.model_provider.provider_name,                       DatasetCollectionBinding.model_name == embedding_model.name). \                order_by(DatasetCollectionBinding.created_at). \                first()            if not dataset_collection_binding:                dataset_collection_binding = DatasetCollectionBinding(                    provider_name=embedding_model.model_provider.provider_name,                    model_name=embedding_model.name,                    collection_name="Vector_index_" + str(uuid.uuid4()).replace("-", "_") + '_Node'                )                db.session.add(dataset_collection_binding)                db.session.commit()            from core.index.vector_index.qdrant_vector_index import QdrantVectorIndex, QdrantConfig            index = QdrantVectorIndex(                dataset=dataset,                config=QdrantConfig(                    endpoint=current_app.config.get('QDRANT_URL'),                    api_key=current_app.config.get('QDRANT_API_KEY'),                    root_path=current_app.root_path                ),                embeddings=embeddings            )            if index:                # index.delete_by_group_id(dataset.id)                index.restore_dataset_in_one(dataset, dataset_collection_binding)            else:                click.echo('passed.')            normalization_count.append(1)        except Exception as e:            click.echo(                click.style('Create dataset index error: {} {}'.format(e.__class__.__name__, str(e)),                            fg='red'))@click.command('update_app_model_configs', help='Migrate data to support paragraph variable.')@click.option("--batch-size", default=500, help="Number of records to migrate in each batch.")def update_app_model_configs(batch_size):    pre_prompt_template = '{{default_input}}'    user_input_form_template = {        "en-US": [            {                "paragraph": {                    "label": "Query",                    "variable": "default_input",                    "required": False,                    "default": ""                }            }        ],        "zh-Hans": [            {                "paragraph": {                    "label": "查询内容",                    "variable": "default_input",                    "required": False,                    "default": ""                }            }        ]    }    click.secho("Start migrate old data that the text generator can support paragraph variable.", fg='green')    total_records = db.session.query(AppModelConfig) \        .join(App, App.app_model_config_id == AppModelConfig.id) \        .filter(App.mode == 'completion') \        .count()    if total_records == 0:        click.secho("No data to migrate.", fg='green')        return    num_batches = (total_records + batch_size - 1) // batch_size    with tqdm(total=total_records, desc="Migrating Data") as pbar:        for i in range(num_batches):            offset = i * batch_size            limit = min(batch_size, total_records - offset)            click.secho(f"Fetching batch {i + 1}/{num_batches} from source database...", fg='green')            data_batch = db.session.query(AppModelConfig) \                .join(App, App.app_model_config_id == AppModelConfig.id) \                .filter(App.mode == 'completion') \                .order_by(App.created_at) \                .offset(offset).limit(limit).all()            if not data_batch:                click.secho("No more data to migrate.", fg='green')                break            try:                click.secho(f"Migrating {len(data_batch)} records...", fg='green')                for data in data_batch:                    # click.secho(f"Migrating data {data.id}, pre_prompt: {data.pre_prompt}, user_input_form: {data.user_input_form}", fg='green')                    if data.pre_prompt is None:                        data.pre_prompt = pre_prompt_template                    else:                        if pre_prompt_template in data.pre_prompt:                            continue                        data.pre_prompt += pre_prompt_template                    app_data = db.session.query(App) \                        .filter(App.id == data.app_id) \                        .one()                    account_data = db.session.query(Account) \                        .join(TenantAccountJoin, Account.id == TenantAccountJoin.account_id) \                        .filter(TenantAccountJoin.role == 'owner') \                        .filter(TenantAccountJoin.tenant_id == app_data.tenant_id) \                        .one_or_none()                    if not account_data:                        continue                    if data.user_input_form is None or data.user_input_form == 'null':                        data.user_input_form = json.dumps(user_input_form_template[account_data.interface_language])                    else:                        raw_json_data = json.loads(data.user_input_form)                        raw_json_data.append(user_input_form_template[account_data.interface_language][0])                        data.user_input_form = json.dumps(raw_json_data)                    # click.secho(f"Updated data {data.id}, pre_prompt: {data.pre_prompt}, user_input_form: {data.user_input_form}", fg='green')                db.session.commit()            except Exception as e:                click.secho(f"Error while migrating data: {e}, app_id: {data.app_id}, app_model_config_id: {data.id}",                            fg='red')                continue            click.secho(f"Successfully migrated batch {i + 1}/{num_batches}.", fg='green')            pbar.update(len(data_batch))@click.command('migrate_default_input_to_dataset_query_variable')@click.option("--batch-size", default=500, help="Number of records to migrate in each batch.")def migrate_default_input_to_dataset_query_variable(batch_size):    click.secho("Starting...", fg='green')    total_records = db.session.query(AppModelConfig) \        .join(App, App.app_model_config_id == AppModelConfig.id) \        .filter(App.mode == 'completion') \        .filter(AppModelConfig.dataset_query_variable == None) \        .count()        if total_records == 0:        click.secho("No data to migrate.", fg='green')        return    num_batches = (total_records + batch_size - 1) // batch_size        with tqdm(total=total_records, desc="Migrating Data") as pbar:        for i in range(num_batches):            offset = i * batch_size            limit = min(batch_size, total_records - offset)            click.secho(f"Fetching batch {i + 1}/{num_batches} from source database...", fg='green')            data_batch = db.session.query(AppModelConfig) \                .join(App, App.app_model_config_id == AppModelConfig.id) \                .filter(App.mode == 'completion') \                .filter(AppModelConfig.dataset_query_variable == None) \                .order_by(App.created_at) \                .offset(offset).limit(limit).all()            if not data_batch:                click.secho("No more data to migrate.", fg='green')                break            try:                click.secho(f"Migrating {len(data_batch)} records...", fg='green')                for data in data_batch:                    config = AppModelConfig.to_dict(data)                    tools = config["agent_mode"]["tools"]                    dataset_exists = "dataset" in str(tools)                    if not dataset_exists:                        continue                    user_input_form = config.get("user_input_form", [])                    for form in user_input_form:                        paragraph = form.get('paragraph')                        if paragraph \                            and paragraph.get('variable') == 'query':                                data.dataset_query_variable = 'query'                                break                                                if paragraph \                            and paragraph.get('variable') == 'default_input':                                data.dataset_query_variable = 'default_input'                                break                db.session.commit()            except Exception as e:                click.secho(f"Error while migrating data: {e}, app_id: {data.app_id}, app_model_config_id: {data.id}",                            fg='red')                continue                        click.secho(f"Successfully migrated batch {i + 1}/{num_batches}.", fg='green')            pbar.update(len(data_batch))def register_commands(app):    app.cli.add_command(reset_password)    app.cli.add_command(reset_email)    app.cli.add_command(generate_invitation_codes)    app.cli.add_command(reset_encrypt_key_pair)    app.cli.add_command(recreate_all_dataset_indexes)    app.cli.add_command(sync_anthropic_hosted_providers)    app.cli.add_command(clean_unused_dataset_indexes)    app.cli.add_command(create_qdrant_indexes)    app.cli.add_command(update_qdrant_indexes)    app.cli.add_command(update_app_model_configs)    app.cli.add_command(normalization_collections)    app.cli.add_command(migrate_default_input_to_dataset_query_variable)
 |