| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051 | 
							- from core.embedding.cached_embedding import CacheEmbedding
 
- from core.index.keyword_table_index.keyword_table_index import KeywordTableConfig, KeywordTableIndex
 
- from core.index.vector_index.vector_index import VectorIndex
 
- from core.model_manager import ModelManager
 
- from core.model_runtime.entities.model_entities import ModelType
 
- from flask import current_app
 
- from langchain.embeddings import OpenAIEmbeddings
 
- from models.dataset import Dataset
 
- class IndexBuilder:
 
-     @classmethod
 
-     def get_index(cls, dataset: Dataset, indexing_technique: str, ignore_high_quality_check: bool = False):
 
-         if indexing_technique == "high_quality":
 
-             if not ignore_high_quality_check and dataset.indexing_technique != 'high_quality':
 
-                 return None
 
-             model_manager = ModelManager()
 
-             embedding_model = model_manager.get_model_instance(
 
-                 tenant_id=dataset.tenant_id,
 
-                 model_type=ModelType.TEXT_EMBEDDING,
 
-                 provider=dataset.embedding_model_provider,
 
-                 model=dataset.embedding_model
 
-             )
 
-             embeddings = CacheEmbedding(embedding_model)
 
-             return VectorIndex(
 
-                 dataset=dataset,
 
-                 config=current_app.config,
 
-                 embeddings=embeddings
 
-             )
 
-         elif indexing_technique == "economy":
 
-             return KeywordTableIndex(
 
-                 dataset=dataset,
 
-                 config=KeywordTableConfig(
 
-                     max_keywords_per_chunk=10
 
-                 )
 
-             )
 
-         else:
 
-             raise ValueError('Unknown indexing technique')
 
-     @classmethod
 
-     def get_default_high_quality_index(cls, dataset: Dataset):
 
-         embeddings = OpenAIEmbeddings(openai_api_key=' ')
 
-         return VectorIndex(
 
-             dataset=dataset,
 
-             config=current_app.config,
 
-             embeddings=embeddings
 
-         )
 
 
  |