advanced_prompt_transform.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272
  1. from typing import Optional, Union
  2. from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEntity
  3. from core.file.file_obj import FileVar
  4. from core.helper.code_executor.jinja2.jinja2_formatter import Jinja2Formatter
  5. from core.memory.token_buffer_memory import TokenBufferMemory
  6. from core.model_runtime.entities.message_entities import (
  7. AssistantPromptMessage,
  8. PromptMessage,
  9. PromptMessageRole,
  10. SystemPromptMessage,
  11. TextPromptMessageContent,
  12. UserPromptMessage,
  13. )
  14. from core.prompt.entities.advanced_prompt_entities import ChatModelMessage, CompletionModelPromptTemplate, MemoryConfig
  15. from core.prompt.prompt_transform import PromptTransform
  16. from core.prompt.simple_prompt_transform import ModelMode
  17. from core.prompt.utils.prompt_template_parser import PromptTemplateParser
  18. class AdvancedPromptTransform(PromptTransform):
  19. """
  20. Advanced Prompt Transform for Workflow LLM Node.
  21. """
  22. def __init__(self, with_variable_tmpl: bool = False) -> None:
  23. self.with_variable_tmpl = with_variable_tmpl
  24. def get_prompt(
  25. self,
  26. prompt_template: Union[list[ChatModelMessage], CompletionModelPromptTemplate],
  27. inputs: dict,
  28. query: str,
  29. files: list[FileVar],
  30. context: Optional[str],
  31. memory_config: Optional[MemoryConfig],
  32. memory: Optional[TokenBufferMemory],
  33. model_config: ModelConfigWithCredentialsEntity,
  34. query_prompt_template: Optional[str] = None,
  35. ) -> list[PromptMessage]:
  36. inputs = {key: str(value) for key, value in inputs.items()}
  37. prompt_messages = []
  38. model_mode = ModelMode.value_of(model_config.mode)
  39. if model_mode == ModelMode.COMPLETION:
  40. prompt_messages = self._get_completion_model_prompt_messages(
  41. prompt_template=prompt_template,
  42. inputs=inputs,
  43. query=query,
  44. files=files,
  45. context=context,
  46. memory_config=memory_config,
  47. memory=memory,
  48. model_config=model_config,
  49. )
  50. elif model_mode == ModelMode.CHAT:
  51. prompt_messages = self._get_chat_model_prompt_messages(
  52. prompt_template=prompt_template,
  53. inputs=inputs,
  54. query=query,
  55. query_prompt_template=query_prompt_template,
  56. files=files,
  57. context=context,
  58. memory_config=memory_config,
  59. memory=memory,
  60. model_config=model_config,
  61. )
  62. return prompt_messages
  63. def _get_completion_model_prompt_messages(
  64. self,
  65. prompt_template: CompletionModelPromptTemplate,
  66. inputs: dict,
  67. query: Optional[str],
  68. files: list[FileVar],
  69. context: Optional[str],
  70. memory_config: Optional[MemoryConfig],
  71. memory: Optional[TokenBufferMemory],
  72. model_config: ModelConfigWithCredentialsEntity,
  73. ) -> list[PromptMessage]:
  74. """
  75. Get completion model prompt messages.
  76. """
  77. raw_prompt = prompt_template.text
  78. prompt_messages = []
  79. if prompt_template.edition_type == "basic" or not prompt_template.edition_type:
  80. prompt_template = PromptTemplateParser(template=raw_prompt, with_variable_tmpl=self.with_variable_tmpl)
  81. prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
  82. prompt_inputs = self._set_context_variable(context, prompt_template, prompt_inputs)
  83. if memory and memory_config:
  84. role_prefix = memory_config.role_prefix
  85. prompt_inputs = self._set_histories_variable(
  86. memory=memory,
  87. memory_config=memory_config,
  88. raw_prompt=raw_prompt,
  89. role_prefix=role_prefix,
  90. prompt_template=prompt_template,
  91. prompt_inputs=prompt_inputs,
  92. model_config=model_config,
  93. )
  94. if query:
  95. prompt_inputs = self._set_query_variable(query, prompt_template, prompt_inputs)
  96. prompt = prompt_template.format(prompt_inputs)
  97. else:
  98. prompt = raw_prompt
  99. prompt_inputs = inputs
  100. prompt = Jinja2Formatter.format(prompt, prompt_inputs)
  101. if files:
  102. prompt_message_contents = [TextPromptMessageContent(data=prompt)]
  103. for file in files:
  104. prompt_message_contents.append(file.prompt_message_content)
  105. prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
  106. else:
  107. prompt_messages.append(UserPromptMessage(content=prompt))
  108. return prompt_messages
  109. def _get_chat_model_prompt_messages(
  110. self,
  111. prompt_template: list[ChatModelMessage],
  112. inputs: dict,
  113. query: Optional[str],
  114. files: list[FileVar],
  115. context: Optional[str],
  116. memory_config: Optional[MemoryConfig],
  117. memory: Optional[TokenBufferMemory],
  118. model_config: ModelConfigWithCredentialsEntity,
  119. query_prompt_template: Optional[str] = None,
  120. ) -> list[PromptMessage]:
  121. """
  122. Get chat model prompt messages.
  123. """
  124. raw_prompt_list = prompt_template
  125. prompt_messages = []
  126. for prompt_item in raw_prompt_list:
  127. raw_prompt = prompt_item.text
  128. if prompt_item.edition_type == "basic" or not prompt_item.edition_type:
  129. prompt_template = PromptTemplateParser(template=raw_prompt, with_variable_tmpl=self.with_variable_tmpl)
  130. prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
  131. prompt_inputs = self._set_context_variable(context, prompt_template, prompt_inputs)
  132. prompt = prompt_template.format(prompt_inputs)
  133. elif prompt_item.edition_type == "jinja2":
  134. prompt = raw_prompt
  135. prompt_inputs = inputs
  136. prompt = Jinja2Formatter.format(prompt, prompt_inputs)
  137. else:
  138. raise ValueError(f"Invalid edition type: {prompt_item.edition_type}")
  139. if prompt_item.role == PromptMessageRole.USER:
  140. prompt_messages.append(UserPromptMessage(content=prompt))
  141. elif prompt_item.role == PromptMessageRole.SYSTEM and prompt:
  142. prompt_messages.append(SystemPromptMessage(content=prompt))
  143. elif prompt_item.role == PromptMessageRole.ASSISTANT:
  144. prompt_messages.append(AssistantPromptMessage(content=prompt))
  145. if query and query_prompt_template:
  146. prompt_template = PromptTemplateParser(
  147. template=query_prompt_template, with_variable_tmpl=self.with_variable_tmpl
  148. )
  149. prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
  150. prompt_inputs["#sys.query#"] = query
  151. prompt_inputs = self._set_context_variable(context, prompt_template, prompt_inputs)
  152. query = prompt_template.format(prompt_inputs)
  153. if memory and memory_config:
  154. prompt_messages = self._append_chat_histories(memory, memory_config, prompt_messages, model_config)
  155. if files:
  156. prompt_message_contents = [TextPromptMessageContent(data=query)]
  157. for file in files:
  158. prompt_message_contents.append(file.prompt_message_content)
  159. prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
  160. else:
  161. prompt_messages.append(UserPromptMessage(content=query))
  162. elif files:
  163. if not query:
  164. # get last message
  165. last_message = prompt_messages[-1] if prompt_messages else None
  166. if last_message and last_message.role == PromptMessageRole.USER:
  167. # get last user message content and add files
  168. prompt_message_contents = [TextPromptMessageContent(data=last_message.content)]
  169. for file in files:
  170. prompt_message_contents.append(file.prompt_message_content)
  171. last_message.content = prompt_message_contents
  172. else:
  173. prompt_message_contents = [TextPromptMessageContent(data="")] # not for query
  174. for file in files:
  175. prompt_message_contents.append(file.prompt_message_content)
  176. prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
  177. else:
  178. prompt_message_contents = [TextPromptMessageContent(data=query)]
  179. for file in files:
  180. prompt_message_contents.append(file.prompt_message_content)
  181. prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
  182. elif query:
  183. prompt_messages.append(UserPromptMessage(content=query))
  184. return prompt_messages
  185. def _set_context_variable(self, context: str, prompt_template: PromptTemplateParser, prompt_inputs: dict) -> dict:
  186. if "#context#" in prompt_template.variable_keys:
  187. if context:
  188. prompt_inputs["#context#"] = context
  189. else:
  190. prompt_inputs["#context#"] = ""
  191. return prompt_inputs
  192. def _set_query_variable(self, query: str, prompt_template: PromptTemplateParser, prompt_inputs: dict) -> dict:
  193. if "#query#" in prompt_template.variable_keys:
  194. if query:
  195. prompt_inputs["#query#"] = query
  196. else:
  197. prompt_inputs["#query#"] = ""
  198. return prompt_inputs
  199. def _set_histories_variable(
  200. self,
  201. memory: TokenBufferMemory,
  202. memory_config: MemoryConfig,
  203. raw_prompt: str,
  204. role_prefix: MemoryConfig.RolePrefix,
  205. prompt_template: PromptTemplateParser,
  206. prompt_inputs: dict,
  207. model_config: ModelConfigWithCredentialsEntity,
  208. ) -> dict:
  209. if "#histories#" in prompt_template.variable_keys:
  210. if memory:
  211. inputs = {"#histories#": "", **prompt_inputs}
  212. prompt_template = PromptTemplateParser(template=raw_prompt, with_variable_tmpl=self.with_variable_tmpl)
  213. prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
  214. tmp_human_message = UserPromptMessage(content=prompt_template.format(prompt_inputs))
  215. rest_tokens = self._calculate_rest_token([tmp_human_message], model_config)
  216. histories = self._get_history_messages_from_memory(
  217. memory=memory,
  218. memory_config=memory_config,
  219. max_token_limit=rest_tokens,
  220. human_prefix=role_prefix.user,
  221. ai_prefix=role_prefix.assistant,
  222. )
  223. prompt_inputs["#histories#"] = histories
  224. else:
  225. prompt_inputs["#histories#"] = ""
  226. return prompt_inputs