xinference.py 4.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142
  1. from xinference_client.client.restful.restful_client import Client, \
  2. RESTfulChatModelHandle, RESTfulGenerateModelHandle, RESTfulChatglmCppChatModelHandle, \
  3. RESTfulEmbeddingModelHandle, RESTfulRerankModelHandle
  4. from xinference_client.types import Embedding, EmbeddingData, EmbeddingUsage
  5. from requests.sessions import Session
  6. from requests import Response
  7. from requests.exceptions import ConnectionError
  8. from typing import Union, List
  9. from _pytest.monkeypatch import MonkeyPatch
  10. import pytest
  11. import os
  12. import re
  13. class MockXinferenceClass(object):
  14. def get_chat_model(self: Client, model_uid: str) -> Union[RESTfulChatglmCppChatModelHandle, RESTfulGenerateModelHandle, RESTfulChatModelHandle]:
  15. if not re.match(r'https?:\/\/[^\s\/$.?#].[^\s]*$', self.base_url):
  16. raise RuntimeError('404 Not Found')
  17. if 'generate' == model_uid:
  18. return RESTfulGenerateModelHandle(model_uid, base_url=self.base_url)
  19. if 'chat' == model_uid:
  20. return RESTfulChatModelHandle(model_uid, base_url=self.base_url)
  21. if 'embedding' == model_uid:
  22. return RESTfulEmbeddingModelHandle(model_uid, base_url=self.base_url)
  23. if 'rerank' == model_uid:
  24. return RESTfulRerankModelHandle(model_uid, base_url=self.base_url)
  25. raise RuntimeError('404 Not Found')
  26. def get(self: Session, url: str, **kwargs):
  27. if '/v1/models/' in url:
  28. response = Response()
  29. # get model uid
  30. model_uid = url.split('/')[-1]
  31. if not re.match(r'[a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}', model_uid) and \
  32. model_uid not in ['generate', 'chat', 'embedding', 'rerank']:
  33. response.status_code = 404
  34. raise ConnectionError('404 Not Found')
  35. # check if url is valid
  36. if not re.match(r'^(https?):\/\/[^\s\/$.?#].[^\s]*$', url):
  37. response.status_code = 404
  38. raise ConnectionError('404 Not Found')
  39. response.status_code = 200
  40. response._content = b'''{
  41. "model_type": "LLM",
  42. "address": "127.0.0.1:43877",
  43. "accelerators": [
  44. "0",
  45. "1"
  46. ],
  47. "model_name": "chatglm3-6b",
  48. "model_lang": [
  49. "en"
  50. ],
  51. "model_ability": [
  52. "generate",
  53. "chat"
  54. ],
  55. "model_description": "latest chatglm3",
  56. "model_format": "pytorch",
  57. "model_size_in_billions": 7,
  58. "quantization": "none",
  59. "model_hub": "huggingface",
  60. "revision": null,
  61. "context_length": 2048,
  62. "replica": 1
  63. }'''
  64. return response
  65. def rerank(self: RESTfulRerankModelHandle, documents: List[str], query: str, top_n: int) -> dict:
  66. # check if self._model_uid is a valid uuid
  67. if not re.match(r'[a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}', self._model_uid) and \
  68. self._model_uid != 'rerank':
  69. raise RuntimeError('404 Not Found')
  70. if not re.match(r'^(https?):\/\/[^\s\/$.?#].[^\s]*$', self._base_url):
  71. raise RuntimeError('404 Not Found')
  72. if top_n is None:
  73. top_n = 1
  74. return {
  75. 'results': [
  76. {
  77. 'index': i,
  78. 'document': doc,
  79. 'relevance_score': 0.9
  80. }
  81. for i, doc in enumerate(documents[:top_n])
  82. ]
  83. }
  84. def create_embedding(
  85. self: RESTfulGenerateModelHandle,
  86. input: Union[str, List[str]],
  87. **kwargs
  88. ) -> dict:
  89. # check if self._model_uid is a valid uuid
  90. if not re.match(r'[a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}', self._model_uid) and \
  91. self._model_uid != 'embedding':
  92. raise RuntimeError('404 Not Found')
  93. if isinstance(input, str):
  94. input = [input]
  95. ipt_len = len(input)
  96. embedding = Embedding(
  97. object="list",
  98. model=self._model_uid,
  99. data=[
  100. EmbeddingData(
  101. index=i,
  102. object="embedding",
  103. embedding=[1919.810 for _ in range(768)]
  104. )
  105. for i in range(ipt_len)
  106. ],
  107. usage=EmbeddingUsage(
  108. prompt_tokens=ipt_len,
  109. total_tokens=ipt_len
  110. )
  111. )
  112. return embedding
  113. MOCK = os.getenv('MOCK_SWITCH', 'false').lower() == 'true'
  114. @pytest.fixture
  115. def setup_xinference_mock(request, monkeypatch: MonkeyPatch):
  116. if MOCK:
  117. monkeypatch.setattr(Client, 'get_model', MockXinferenceClass.get_chat_model)
  118. monkeypatch.setattr(Session, 'get', MockXinferenceClass.get)
  119. monkeypatch.setattr(RESTfulEmbeddingModelHandle, 'create_embedding', MockXinferenceClass.create_embedding)
  120. monkeypatch.setattr(RESTfulRerankModelHandle, 'rerank', MockXinferenceClass.rerank)
  121. yield
  122. if MOCK:
  123. monkeypatch.undo()