| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394 | 
							
- from typing import List, Optional
 
- from core.index.index import IndexBuilder
 
- from langchain.schema import Document
 
- from models.dataset import Dataset, DocumentSegment
 
- class VectorService:
 
-     @classmethod
 
-     def create_segment_vector(cls, keywords: Optional[List[str]], segment: DocumentSegment, dataset: Dataset):
 
-         document = Document(
 
-             page_content=segment.content,
 
-             metadata={
 
-                 "doc_id": segment.index_node_id,
 
-                 "doc_hash": segment.index_node_hash,
 
-                 "document_id": segment.document_id,
 
-                 "dataset_id": segment.dataset_id,
 
-             }
 
-         )
 
-         # save vector index
 
-         index = IndexBuilder.get_index(dataset, 'high_quality')
 
-         if index:
 
-             index.add_texts([document], duplicate_check=True)
 
-         # save keyword index
 
-         index = IndexBuilder.get_index(dataset, 'economy')
 
-         if index:
 
-             if keywords and len(keywords) > 0:
 
-                 index.create_segment_keywords(segment.index_node_id, keywords)
 
-             else:
 
-                 index.add_texts([document])
 
-     @classmethod
 
-     def multi_create_segment_vector(cls, pre_segment_data_list: list, dataset: Dataset):
 
-         documents = []
 
-         for pre_segment_data in pre_segment_data_list:
 
-             segment = pre_segment_data['segment']
 
-             document = Document(
 
-                 page_content=segment.content,
 
-                 metadata={
 
-                     "doc_id": segment.index_node_id,
 
-                     "doc_hash": segment.index_node_hash,
 
-                     "document_id": segment.document_id,
 
-                     "dataset_id": segment.dataset_id,
 
-                 }
 
-             )
 
-             documents.append(document)
 
-         # save vector index
 
-         index = IndexBuilder.get_index(dataset, 'high_quality')
 
-         if index:
 
-             index.add_texts(documents, duplicate_check=True)
 
-         # save keyword index
 
-         keyword_index = IndexBuilder.get_index(dataset, 'economy')
 
-         if keyword_index:
 
-             keyword_index.multi_create_segment_keywords(pre_segment_data_list)
 
-     @classmethod
 
-     def update_segment_vector(cls, keywords: Optional[List[str]], segment: DocumentSegment, dataset: Dataset):
 
-         # update segment index task
 
-         vector_index = IndexBuilder.get_index(dataset, 'high_quality')
 
-         kw_index = IndexBuilder.get_index(dataset, 'economy')
 
-         # delete from vector index
 
-         if vector_index:
 
-             vector_index.delete_by_ids([segment.index_node_id])
 
-         # delete from keyword index
 
-         kw_index.delete_by_ids([segment.index_node_id])
 
-         # add new index
 
-         document = Document(
 
-             page_content=segment.content,
 
-             metadata={
 
-                 "doc_id": segment.index_node_id,
 
-                 "doc_hash": segment.index_node_hash,
 
-                 "document_id": segment.document_id,
 
-                 "dataset_id": segment.dataset_id,
 
-             }
 
-         )
 
-         # save vector index
 
-         if vector_index:
 
-             vector_index.add_texts([document], duplicate_check=True)
 
-         # save keyword index
 
-         if keywords and len(keywords) > 0:
 
-             kw_index.create_segment_keywords(segment.index_node_id, keywords)
 
-         else:
 
-             kw_index.add_texts([document])
 
 
  |