| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378 | import concurrent.futuresimport jsonfrom concurrent.futures import ThreadPoolExecutorfrom typing import Optionalfrom flask import Flask, current_appfrom sqlalchemy.orm import load_onlyfrom configs import dify_configfrom core.rag.data_post_processor.data_post_processor import DataPostProcessorfrom core.rag.datasource.keyword.keyword_factory import Keywordfrom core.rag.datasource.vdb.vector_factory import Vectorfrom core.rag.embedding.retrieval import RetrievalSegmentsfrom core.rag.index_processor.constant.index_type import IndexTypefrom core.rag.models.document import Documentfrom core.rag.rerank.rerank_type import RerankModefrom core.rag.retrieval.retrieval_methods import RetrievalMethodfrom extensions.ext_database import dbfrom models.dataset import ChildChunk, Dataset, DocumentSegmentfrom models.dataset import Document as DatasetDocumentfrom services.external_knowledge_service import ExternalDatasetServicedefault_retrieval_model = {    "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,    "reranking_enable": False,    "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},    "top_k": 2,    "score_threshold_enabled": False,}class RetrievalService:    # Cache precompiled regular expressions to avoid repeated compilation    @classmethod    def retrieve(        cls,        retrieval_method: str,        dataset_id: str,        query: str,        top_k: int,        score_threshold: Optional[float] = 0.0,        reranking_model: Optional[dict] = None,        reranking_mode: str = "reranking_model",        weights: Optional[dict] = None,    ):        if not query:            return []        dataset = cls._get_dataset(dataset_id)        if not dataset or dataset.available_document_count == 0 or dataset.available_segment_count == 0:            return []        all_documents: list[Document] = []        exceptions: list[str] = []        # Optimize multithreading with thread pools        with ThreadPoolExecutor(max_workers=dify_config.RETRIEVAL_SERVICE_EXECUTORS) as executor:  # type: ignore            futures = []            if retrieval_method == "keyword_search":                futures.append(                    executor.submit(                        cls.keyword_search,                        flask_app=current_app._get_current_object(),  # type: ignore                        dataset_id=dataset_id,                        query=query,                        top_k=top_k,                        all_documents=all_documents,                        exceptions=exceptions,                    )                )            if RetrievalMethod.is_support_semantic_search(retrieval_method):                futures.append(                    executor.submit(                        cls.embedding_search,                        flask_app=current_app._get_current_object(),  # type: ignore                        dataset_id=dataset_id,                        query=query,                        top_k=top_k,                        score_threshold=score_threshold,                        reranking_model=reranking_model,                        all_documents=all_documents,                        retrieval_method=retrieval_method,                        exceptions=exceptions,                    )                )            if RetrievalMethod.is_support_fulltext_search(retrieval_method):                futures.append(                    executor.submit(                        cls.full_text_index_search,                        flask_app=current_app._get_current_object(),  # type: ignore                        dataset_id=dataset_id,                        query=query,                        top_k=top_k,                        score_threshold=score_threshold,                        reranking_model=reranking_model,                        all_documents=all_documents,                        retrieval_method=retrieval_method,                        exceptions=exceptions,                    )                )            concurrent.futures.wait(futures, timeout=30, return_when=concurrent.futures.ALL_COMPLETED)        if exceptions:            raise ValueError(";\n".join(exceptions))        if retrieval_method == RetrievalMethod.HYBRID_SEARCH.value:            data_post_processor = DataPostProcessor(                str(dataset.tenant_id), reranking_mode, reranking_model, weights, False            )            all_documents = data_post_processor.invoke(                query=query,                documents=all_documents,                score_threshold=score_threshold,                top_n=top_k,            )        return all_documents    @classmethod    def external_retrieve(cls, dataset_id: str, query: str, external_retrieval_model: Optional[dict] = None):        dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()        if not dataset:            return []        all_documents = ExternalDatasetService.fetch_external_knowledge_retrieval(            dataset.tenant_id, dataset_id, query, external_retrieval_model or {}        )        return all_documents    @classmethod    def _get_dataset(cls, dataset_id: str) -> Optional[Dataset]:        return db.session.query(Dataset).filter(Dataset.id == dataset_id).first()    @classmethod    def keyword_search(        cls, flask_app: Flask, dataset_id: str, query: str, top_k: int, all_documents: list, exceptions: list    ):        with flask_app.app_context():            try:                dataset = cls._get_dataset(dataset_id)                if not dataset:                    raise ValueError("dataset not found")                keyword = Keyword(dataset=dataset)                documents = keyword.search(cls.escape_query_for_search(query), top_k=top_k)                all_documents.extend(documents)            except Exception as e:                exceptions.append(str(e))    @classmethod    def embedding_search(        cls,        flask_app: Flask,        dataset_id: str,        query: str,        top_k: int,        score_threshold: Optional[float],        reranking_model: Optional[dict],        all_documents: list,        retrieval_method: str,        exceptions: list,    ):        with flask_app.app_context():            try:                dataset = cls._get_dataset(dataset_id)                if not dataset:                    raise ValueError("dataset not found")                vector = Vector(dataset=dataset)                documents = vector.search_by_vector(                    query,                    search_type="similarity_score_threshold",                    top_k=top_k,                    score_threshold=score_threshold,                    filter={"group_id": [dataset.id]},                )                if documents:                    if (                        reranking_model                        and reranking_model.get("reranking_model_name")                        and reranking_model.get("reranking_provider_name")                        and retrieval_method == RetrievalMethod.SEMANTIC_SEARCH.value                    ):                        data_post_processor = DataPostProcessor(                            str(dataset.tenant_id), str(RerankMode.RERANKING_MODEL.value), reranking_model, None, False                        )                        all_documents.extend(                            data_post_processor.invoke(                                query=query,                                documents=documents,                                score_threshold=score_threshold,                                top_n=len(documents),                            )                        )                    else:                        all_documents.extend(documents)            except Exception as e:                exceptions.append(str(e))    @classmethod    def full_text_index_search(        cls,        flask_app: Flask,        dataset_id: str,        query: str,        top_k: int,        score_threshold: Optional[float],        reranking_model: Optional[dict],        all_documents: list,        retrieval_method: str,        exceptions: list,    ):        with flask_app.app_context():            try:                dataset = cls._get_dataset(dataset_id)                if not dataset:                    raise ValueError("dataset not found")                vector_processor = Vector(dataset=dataset)                documents = vector_processor.search_by_full_text(cls.escape_query_for_search(query), top_k=top_k)                if documents:                    if (                        reranking_model                        and reranking_model.get("reranking_model_name")                        and reranking_model.get("reranking_provider_name")                        and retrieval_method == RetrievalMethod.FULL_TEXT_SEARCH.value                    ):                        data_post_processor = DataPostProcessor(                            str(dataset.tenant_id), str(RerankMode.RERANKING_MODEL.value), reranking_model, None, False                        )                        all_documents.extend(                            data_post_processor.invoke(                                query=query,                                documents=documents,                                score_threshold=score_threshold,                                top_n=len(documents),                            )                        )                    else:                        all_documents.extend(documents)            except Exception as e:                exceptions.append(str(e))    @staticmethod    def escape_query_for_search(query: str) -> str:        return json.dumps(query).strip('"')    @classmethod    def format_retrieval_documents(cls, documents: list[Document]) -> list[RetrievalSegments]:        """Format retrieval documents with optimized batch processing"""        if not documents:            return []        try:            # Collect document IDs            document_ids = {doc.metadata.get("document_id") for doc in documents if "document_id" in doc.metadata}            if not document_ids:                return []            # Batch query dataset documents            dataset_documents = {                doc.id: doc                for doc in db.session.query(DatasetDocument)                .filter(DatasetDocument.id.in_(document_ids))                .options(load_only(DatasetDocument.id, DatasetDocument.doc_form, DatasetDocument.dataset_id))                .all()            }            records = []            include_segment_ids = set()            segment_child_map = {}            # Process documents            for document in documents:                document_id = document.metadata.get("document_id")                if document_id not in dataset_documents:                    continue                dataset_document = dataset_documents[document_id]                if dataset_document.doc_form == IndexType.PARENT_CHILD_INDEX:                    # Handle parent-child documents                    child_index_node_id = document.metadata.get("doc_id")                    child_chunk = (                        db.session.query(ChildChunk).filter(ChildChunk.index_node_id == child_index_node_id).first()                    )                    if not child_chunk:                        continue                    segment = (                        db.session.query(DocumentSegment)                        .filter(                            DocumentSegment.dataset_id == dataset_document.dataset_id,                            DocumentSegment.enabled == True,                            DocumentSegment.status == "completed",                            DocumentSegment.id == child_chunk.segment_id,                        )                        .options(                            load_only(                                DocumentSegment.id,                                DocumentSegment.content,                                DocumentSegment.answer,                            )                        )                        .first()                    )                    if not segment:                        continue                    if segment.id not in include_segment_ids:                        include_segment_ids.add(segment.id)                        child_chunk_detail = {                            "id": child_chunk.id,                            "content": child_chunk.content,                            "position": child_chunk.position,                            "score": document.metadata.get("score", 0.0),                        }                        map_detail = {                            "max_score": document.metadata.get("score", 0.0),                            "child_chunks": [child_chunk_detail],                        }                        segment_child_map[segment.id] = map_detail                        record = {                            "segment": segment,                        }                        records.append(record)                    else:                        child_chunk_detail = {                            "id": child_chunk.id,                            "content": child_chunk.content,                            "position": child_chunk.position,                            "score": document.metadata.get("score", 0.0),                        }                        segment_child_map[segment.id]["child_chunks"].append(child_chunk_detail)                        segment_child_map[segment.id]["max_score"] = max(                            segment_child_map[segment.id]["max_score"], document.metadata.get("score", 0.0)                        )                else:                    # Handle normal documents                    index_node_id = document.metadata.get("doc_id")                    if not index_node_id:                        continue                    segment = (                        db.session.query(DocumentSegment)                        .filter(                            DocumentSegment.dataset_id == dataset_document.dataset_id,                            DocumentSegment.enabled == True,                            DocumentSegment.status == "completed",                            DocumentSegment.index_node_id == index_node_id,                        )                        .first()                    )                    if not segment:                        continue                    include_segment_ids.add(segment.id)                    record = {                        "segment": segment,                        "score": document.metadata.get("score"),  # type: ignore                    }                    records.append(record)            # Add child chunks information to records            for record in records:                if record["segment"].id in segment_child_map:                    record["child_chunks"] = segment_child_map[record["segment"].id].get("child_chunks")  # type: ignore                    record["score"] = segment_child_map[record["segment"].id]["max_score"]            return [RetrievalSegments(**record) for record in records]        except Exception as e:            db.session.rollback()            raise e
 |