| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131 | from core.model_runtime.entities.model_entities import DefaultParameterNamePARAMETER_RULE_TEMPLATE: dict[DefaultParameterName, dict] = {    DefaultParameterName.TEMPERATURE: {        "label": {            "en_US": "Temperature",            "zh_Hans": "温度",        },        "type": "float",        "help": {            "en_US": "Controls randomness. Lower temperature results in less random completions."            " As the temperature approaches zero, the model will become deterministic and repetitive."            " Higher temperature results in more random completions.",            "zh_Hans": "温度控制随机性。较低的温度会导致较少的随机完成。随着温度接近零,模型将变得确定性和重复性。"            "较高的温度会导致更多的随机完成。",        },        "required": False,        "default": 0.0,        "min": 0.0,        "max": 1.0,        "precision": 2,    },    DefaultParameterName.TOP_P: {        "label": {            "en_US": "Top P",            "zh_Hans": "Top P",        },        "type": "float",        "help": {            "en_US": "Controls diversity via nucleus sampling: 0.5 means half of all likelihood-weighted options"            " are considered.",            "zh_Hans": "通过核心采样控制多样性:0.5表示考虑了一半的所有可能性加权选项。",        },        "required": False,        "default": 1.0,        "min": 0.0,        "max": 1.0,        "precision": 2,    },    DefaultParameterName.TOP_K: {        "label": {            "en_US": "Top K",            "zh_Hans": "Top K",        },        "type": "int",        "help": {            "en_US": "Limits the number of tokens to consider for each step by keeping only the k most likely tokens.",            "zh_Hans": "通过只保留每一步中最可能的 k 个标记来限制要考虑的标记数量。",        },        "required": False,        "default": 50,        "min": 1,        "max": 100,        "precision": 0,    },    DefaultParameterName.PRESENCE_PENALTY: {        "label": {            "en_US": "Presence Penalty",            "zh_Hans": "存在惩罚",        },        "type": "float",        "help": {            "en_US": "Applies a penalty to the log-probability of tokens already in the text.",            "zh_Hans": "对文本中已有的标记的对数概率施加惩罚。",        },        "required": False,        "default": 0.0,        "min": 0.0,        "max": 1.0,        "precision": 2,    },    DefaultParameterName.FREQUENCY_PENALTY: {        "label": {            "en_US": "Frequency Penalty",            "zh_Hans": "频率惩罚",        },        "type": "float",        "help": {            "en_US": "Applies a penalty to the log-probability of tokens that appear in the text.",            "zh_Hans": "对文本中出现的标记的对数概率施加惩罚。",        },        "required": False,        "default": 0.0,        "min": 0.0,        "max": 1.0,        "precision": 2,    },    DefaultParameterName.MAX_TOKENS: {        "label": {            "en_US": "Max Tokens",            "zh_Hans": "最大标记",        },        "type": "int",        "help": {            "en_US": "Specifies the upper limit on the length of generated results."            " If the generated results are truncated, you can increase this parameter.",            "zh_Hans": "指定生成结果长度的上限。如果生成结果截断,可以调大该参数。",        },        "required": False,        "default": 64,        "min": 1,        "max": 2048,        "precision": 0,    },    DefaultParameterName.RESPONSE_FORMAT: {        "label": {            "en_US": "Response Format",            "zh_Hans": "回复格式",        },        "type": "string",        "help": {            "en_US": "Set a response format, ensure the output from llm is a valid code block as possible,"            " such as JSON, XML, etc.",            "zh_Hans": "设置一个返回格式,确保llm的输出尽可能是有效的代码块,如JSON、XML等",        },        "required": False,        "options": ["JSON", "XML"],    },    DefaultParameterName.JSON_SCHEMA: {        "label": {            "en_US": "JSON Schema",        },        "type": "text",        "help": {            "en_US": "Set a response json schema will ensure LLM to adhere it.",            "zh_Hans": "设置返回的json schema,llm将按照它返回",        },        "required": False,    },}
 |