retrieval_service.py 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340
  1. import threading
  2. from typing import Optional
  3. from flask import Flask, current_app
  4. from core.rag.data_post_processor.data_post_processor import DataPostProcessor
  5. from core.rag.datasource.keyword.keyword_factory import Keyword
  6. from core.rag.datasource.vdb.vector_factory import Vector
  7. from core.rag.embedding.retrieval import RetrievalSegments
  8. from core.rag.index_processor.constant.index_type import IndexType
  9. from core.rag.models.document import Document
  10. from core.rag.rerank.rerank_type import RerankMode
  11. from core.rag.retrieval.retrieval_methods import RetrievalMethod
  12. from extensions.ext_database import db
  13. from models.dataset import ChildChunk, Dataset, DocumentSegment
  14. from models.dataset import Document as DatasetDocument
  15. from services.external_knowledge_service import ExternalDatasetService
  16. default_retrieval_model = {
  17. "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
  18. "reranking_enable": False,
  19. "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
  20. "top_k": 2,
  21. "score_threshold_enabled": False,
  22. }
  23. class RetrievalService:
  24. @classmethod
  25. def retrieve(
  26. cls,
  27. retrieval_method: str,
  28. dataset_id: str,
  29. query: str,
  30. top_k: int,
  31. score_threshold: Optional[float] = 0.0,
  32. reranking_model: Optional[dict] = None,
  33. reranking_mode: str = "reranking_model",
  34. weights: Optional[dict] = None,
  35. ):
  36. if not query:
  37. return []
  38. dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
  39. if not dataset:
  40. return []
  41. if not dataset or dataset.available_document_count == 0 or dataset.available_segment_count == 0:
  42. return []
  43. all_documents: list[Document] = []
  44. threads: list[threading.Thread] = []
  45. exceptions: list[str] = []
  46. # retrieval_model source with keyword
  47. if retrieval_method == "keyword_search":
  48. keyword_thread = threading.Thread(
  49. target=RetrievalService.keyword_search,
  50. kwargs={
  51. "flask_app": current_app._get_current_object(), # type: ignore
  52. "dataset_id": dataset_id,
  53. "query": query,
  54. "top_k": top_k,
  55. "all_documents": all_documents,
  56. "exceptions": exceptions,
  57. },
  58. )
  59. threads.append(keyword_thread)
  60. keyword_thread.start()
  61. # retrieval_model source with semantic
  62. if RetrievalMethod.is_support_semantic_search(retrieval_method):
  63. embedding_thread = threading.Thread(
  64. target=RetrievalService.embedding_search,
  65. kwargs={
  66. "flask_app": current_app._get_current_object(), # type: ignore
  67. "dataset_id": dataset_id,
  68. "query": query,
  69. "top_k": top_k,
  70. "score_threshold": score_threshold,
  71. "reranking_model": reranking_model,
  72. "all_documents": all_documents,
  73. "retrieval_method": retrieval_method,
  74. "exceptions": exceptions,
  75. },
  76. )
  77. threads.append(embedding_thread)
  78. embedding_thread.start()
  79. # retrieval source with full text
  80. if RetrievalMethod.is_support_fulltext_search(retrieval_method):
  81. full_text_index_thread = threading.Thread(
  82. target=RetrievalService.full_text_index_search,
  83. kwargs={
  84. "flask_app": current_app._get_current_object(), # type: ignore
  85. "dataset_id": dataset_id,
  86. "query": query,
  87. "retrieval_method": retrieval_method,
  88. "score_threshold": score_threshold,
  89. "top_k": top_k,
  90. "reranking_model": reranking_model,
  91. "all_documents": all_documents,
  92. "exceptions": exceptions,
  93. },
  94. )
  95. threads.append(full_text_index_thread)
  96. full_text_index_thread.start()
  97. for thread in threads:
  98. thread.join()
  99. if exceptions:
  100. exception_message = ";\n".join(exceptions)
  101. raise ValueError(exception_message)
  102. if retrieval_method == RetrievalMethod.HYBRID_SEARCH.value:
  103. data_post_processor = DataPostProcessor(
  104. str(dataset.tenant_id), reranking_mode, reranking_model, weights, False
  105. )
  106. all_documents = data_post_processor.invoke(
  107. query=query,
  108. documents=all_documents,
  109. score_threshold=score_threshold,
  110. top_n=top_k,
  111. )
  112. return all_documents
  113. @classmethod
  114. def external_retrieve(cls, dataset_id: str, query: str, external_retrieval_model: Optional[dict] = None):
  115. dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
  116. if not dataset:
  117. return []
  118. all_documents = ExternalDatasetService.fetch_external_knowledge_retrieval(
  119. dataset.tenant_id, dataset_id, query, external_retrieval_model or {}
  120. )
  121. return all_documents
  122. @classmethod
  123. def keyword_search(
  124. cls, flask_app: Flask, dataset_id: str, query: str, top_k: int, all_documents: list, exceptions: list
  125. ):
  126. with flask_app.app_context():
  127. try:
  128. dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
  129. if not dataset:
  130. raise ValueError("dataset not found")
  131. keyword = Keyword(dataset=dataset)
  132. documents = keyword.search(cls.escape_query_for_search(query), top_k=top_k)
  133. all_documents.extend(documents)
  134. except Exception as e:
  135. exceptions.append(str(e))
  136. @classmethod
  137. def embedding_search(
  138. cls,
  139. flask_app: Flask,
  140. dataset_id: str,
  141. query: str,
  142. top_k: int,
  143. score_threshold: Optional[float],
  144. reranking_model: Optional[dict],
  145. all_documents: list,
  146. retrieval_method: str,
  147. exceptions: list,
  148. ):
  149. with flask_app.app_context():
  150. try:
  151. dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
  152. if not dataset:
  153. raise ValueError("dataset not found")
  154. vector = Vector(dataset=dataset)
  155. documents = vector.search_by_vector(
  156. cls.escape_query_for_search(query),
  157. search_type="similarity_score_threshold",
  158. top_k=top_k,
  159. score_threshold=score_threshold,
  160. filter={"group_id": [dataset.id]},
  161. )
  162. if documents:
  163. if (
  164. reranking_model
  165. and reranking_model.get("reranking_model_name")
  166. and reranking_model.get("reranking_provider_name")
  167. and retrieval_method == RetrievalMethod.SEMANTIC_SEARCH.value
  168. ):
  169. data_post_processor = DataPostProcessor(
  170. str(dataset.tenant_id), RerankMode.RERANKING_MODEL.value, reranking_model, None, False
  171. )
  172. all_documents.extend(
  173. data_post_processor.invoke(
  174. query=query,
  175. documents=documents,
  176. score_threshold=score_threshold,
  177. top_n=len(documents),
  178. )
  179. )
  180. else:
  181. all_documents.extend(documents)
  182. except Exception as e:
  183. exceptions.append(str(e))
  184. @classmethod
  185. def full_text_index_search(
  186. cls,
  187. flask_app: Flask,
  188. dataset_id: str,
  189. query: str,
  190. top_k: int,
  191. score_threshold: Optional[float],
  192. reranking_model: Optional[dict],
  193. all_documents: list,
  194. retrieval_method: str,
  195. exceptions: list,
  196. ):
  197. with flask_app.app_context():
  198. try:
  199. dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
  200. if not dataset:
  201. raise ValueError("dataset not found")
  202. vector_processor = Vector(
  203. dataset=dataset,
  204. )
  205. documents = vector_processor.search_by_full_text(cls.escape_query_for_search(query), top_k=top_k)
  206. if documents:
  207. if (
  208. reranking_model
  209. and reranking_model.get("reranking_model_name")
  210. and reranking_model.get("reranking_provider_name")
  211. and retrieval_method == RetrievalMethod.FULL_TEXT_SEARCH.value
  212. ):
  213. data_post_processor = DataPostProcessor(
  214. str(dataset.tenant_id), RerankMode.RERANKING_MODEL.value, reranking_model, None, False
  215. )
  216. all_documents.extend(
  217. data_post_processor.invoke(
  218. query=query,
  219. documents=documents,
  220. score_threshold=score_threshold,
  221. top_n=len(documents),
  222. )
  223. )
  224. else:
  225. all_documents.extend(documents)
  226. except Exception as e:
  227. exceptions.append(str(e))
  228. @staticmethod
  229. def escape_query_for_search(query: str) -> str:
  230. return query.replace('"', '\\"')
  231. @staticmethod
  232. def format_retrieval_documents(documents: list[Document]) -> list[RetrievalSegments]:
  233. records = []
  234. include_segment_ids = []
  235. segment_child_map = {}
  236. for document in documents:
  237. document_id = document.metadata.get("document_id")
  238. dataset_document = db.session.query(DatasetDocument).filter(DatasetDocument.id == document_id).first()
  239. if dataset_document:
  240. if dataset_document.doc_form == IndexType.PARENT_CHILD_INDEX:
  241. child_index_node_id = document.metadata.get("doc_id")
  242. result = (
  243. db.session.query(ChildChunk, DocumentSegment)
  244. .join(DocumentSegment, ChildChunk.segment_id == DocumentSegment.id)
  245. .filter(
  246. ChildChunk.index_node_id == child_index_node_id,
  247. DocumentSegment.dataset_id == dataset_document.dataset_id,
  248. DocumentSegment.enabled == True,
  249. DocumentSegment.status == "completed",
  250. )
  251. .first()
  252. )
  253. if result:
  254. child_chunk, segment = result
  255. if not segment:
  256. continue
  257. if segment.id not in include_segment_ids:
  258. include_segment_ids.append(segment.id)
  259. child_chunk_detail = {
  260. "id": child_chunk.id,
  261. "content": child_chunk.content,
  262. "position": child_chunk.position,
  263. "score": document.metadata.get("score", 0.0),
  264. }
  265. map_detail = {
  266. "max_score": document.metadata.get("score", 0.0),
  267. "child_chunks": [child_chunk_detail],
  268. }
  269. segment_child_map[segment.id] = map_detail
  270. record = {
  271. "segment": segment,
  272. }
  273. records.append(record)
  274. else:
  275. child_chunk_detail = {
  276. "id": child_chunk.id,
  277. "content": child_chunk.content,
  278. "position": child_chunk.position,
  279. "score": document.metadata.get("score", 0.0),
  280. }
  281. segment_child_map[segment.id]["child_chunks"].append(child_chunk_detail)
  282. segment_child_map[segment.id]["max_score"] = max(
  283. segment_child_map[segment.id]["max_score"], document.metadata.get("score", 0.0)
  284. )
  285. else:
  286. continue
  287. else:
  288. index_node_id = document.metadata["doc_id"]
  289. segment = (
  290. db.session.query(DocumentSegment)
  291. .filter(
  292. DocumentSegment.dataset_id == dataset_document.dataset_id,
  293. DocumentSegment.enabled == True,
  294. DocumentSegment.status == "completed",
  295. DocumentSegment.index_node_id == index_node_id,
  296. )
  297. .first()
  298. )
  299. if not segment:
  300. continue
  301. include_segment_ids.append(segment.id)
  302. record = {
  303. "segment": segment,
  304. "score": document.metadata.get("score", None),
  305. }
  306. records.append(record)
  307. for record in records:
  308. if record["segment"].id in segment_child_map:
  309. record["child_chunks"] = segment_child_map[record["segment"].id].get("child_chunks", None)
  310. record["score"] = segment_child_map[record["segment"].id]["max_score"]
  311. return [RetrievalSegments(**record) for record in records]