| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178 | 
							- import math
 
- from collections import Counter
 
- from typing import Optional
 
- import numpy as np
 
- from core.embedding.cached_embedding import CacheEmbedding
 
- from core.model_manager import ModelManager
 
- from core.model_runtime.entities.model_entities import ModelType
 
- from core.rag.datasource.keyword.jieba.jieba_keyword_table_handler import JiebaKeywordTableHandler
 
- from core.rag.models.document import Document
 
- from core.rag.rerank.entity.weight import VectorSetting, Weights
 
- class WeightRerankRunner:
 
-     def __init__(self, tenant_id: str, weights: Weights) -> None:
 
-         self.tenant_id = tenant_id
 
-         self.weights = weights
 
-     def run(self, query: str, documents: list[Document], score_threshold: Optional[float] = None,
 
-             top_n: Optional[int] = None, user: Optional[str] = None) -> list[Document]:
 
-         """
 
-         Run rerank model
 
-         :param query: search query
 
-         :param documents: documents for reranking
 
-         :param score_threshold: score threshold
 
-         :param top_n: top n
 
-         :param user: unique user id if needed
 
-         :return:
 
-         """
 
-         docs = []
 
-         doc_id = []
 
-         unique_documents = []
 
-         for document in documents:
 
-             if document.metadata['doc_id'] not in doc_id:
 
-                 doc_id.append(document.metadata['doc_id'])
 
-                 docs.append(document.page_content)
 
-                 unique_documents.append(document)
 
-         documents = unique_documents
 
-         rerank_documents = []
 
-         query_scores = self._calculate_keyword_score(query, documents)
 
-         query_vector_scores = self._calculate_cosine(self.tenant_id, query, documents, self.weights.vector_setting)
 
-         for document, query_score, query_vector_score in zip(documents, query_scores, query_vector_scores):
 
-             # format document
 
-             score = self.weights.vector_setting.vector_weight * query_vector_score + \
 
-                     self.weights.keyword_setting.keyword_weight * query_score
 
-             if score_threshold and score < score_threshold:
 
-                 continue
 
-             document.metadata['score'] = score
 
-             rerank_documents.append(document)
 
-         rerank_documents = sorted(rerank_documents, key=lambda x: x.metadata['score'], reverse=True)
 
-         return rerank_documents[:top_n] if top_n else rerank_documents
 
-     def _calculate_keyword_score(self, query: str, documents: list[Document]) -> list[float]:
 
-         """
 
-         Calculate BM25 scores
 
-         :param query: search query
 
-         :param documents: documents for reranking
 
-         :return:
 
-         """
 
-         keyword_table_handler = JiebaKeywordTableHandler()
 
-         query_keywords = keyword_table_handler.extract_keywords(query, None)
 
-         documents_keywords = []
 
-         for document in documents:
 
-             # get the document keywords
 
-             document_keywords = keyword_table_handler.extract_keywords(document.page_content, None)
 
-             document.metadata['keywords'] = document_keywords
 
-             documents_keywords.append(document_keywords)
 
-         # Counter query keywords(TF)
 
-         query_keyword_counts = Counter(query_keywords)
 
-         # total documents
 
-         total_documents = len(documents)
 
-         # calculate all documents' keywords IDF
 
-         all_keywords = set()
 
-         for document_keywords in documents_keywords:
 
-             all_keywords.update(document_keywords)
 
-         keyword_idf = {}
 
-         for keyword in all_keywords:
 
-             # calculate include query keywords' documents
 
-             doc_count_containing_keyword = sum(1 for doc_keywords in documents_keywords if keyword in doc_keywords)
 
-             # IDF
 
-             keyword_idf[keyword] = math.log((1 + total_documents) / (1 + doc_count_containing_keyword)) + 1
 
-         query_tfidf = {}
 
-         for keyword, count in query_keyword_counts.items():
 
-             tf = count
 
-             idf = keyword_idf.get(keyword, 0)
 
-             query_tfidf[keyword] = tf * idf
 
-         # calculate all documents' TF-IDF
 
-         documents_tfidf = []
 
-         for document_keywords in documents_keywords:
 
-             document_keyword_counts = Counter(document_keywords)
 
-             document_tfidf = {}
 
-             for keyword, count in document_keyword_counts.items():
 
-                 tf = count
 
-                 idf = keyword_idf.get(keyword, 0)
 
-                 document_tfidf[keyword] = tf * idf
 
-             documents_tfidf.append(document_tfidf)
 
-         def cosine_similarity(vec1, vec2):
 
-             intersection = set(vec1.keys()) & set(vec2.keys())
 
-             numerator = sum(vec1[x] * vec2[x] for x in intersection)
 
-             sum1 = sum(vec1[x] ** 2 for x in vec1.keys())
 
-             sum2 = sum(vec2[x] ** 2 for x in vec2.keys())
 
-             denominator = math.sqrt(sum1) * math.sqrt(sum2)
 
-             if not denominator:
 
-                 return 0.0
 
-             else:
 
-                 return float(numerator) / denominator
 
-         similarities = []
 
-         for document_tfidf in documents_tfidf:
 
-             similarity = cosine_similarity(query_tfidf, document_tfidf)
 
-             similarities.append(similarity)
 
-         # for idx, similarity in enumerate(similarities):
 
-         #     print(f"Document {idx + 1} similarity: {similarity}")
 
-         return similarities
 
-     def _calculate_cosine(self, tenant_id: str, query: str, documents: list[Document],
 
-                           vector_setting: VectorSetting) -> list[float]:
 
-         """
 
-         Calculate Cosine scores
 
-         :param query: search query
 
-         :param documents: documents for reranking
 
-         :return:
 
-         """
 
-         query_vector_scores = []
 
-         model_manager = ModelManager()
 
-         embedding_model = model_manager.get_model_instance(
 
-             tenant_id=tenant_id,
 
-             provider=vector_setting.embedding_provider_name,
 
-             model_type=ModelType.TEXT_EMBEDDING,
 
-             model=vector_setting.embedding_model_name
 
-         )
 
-         cache_embedding = CacheEmbedding(embedding_model)
 
-         query_vector = cache_embedding.embed_query(query)
 
-         for document in documents:
 
-             # calculate cosine similarity
 
-             if 'score' in document.metadata:
 
-                 query_vector_scores.append(document.metadata['score'])
 
-             else:
 
-                 # transform to NumPy
 
-                 vec1 = np.array(query_vector)
 
-                 vec2 = np.array(document.vector)
 
-                 # calculate dot product
 
-                 dot_product = np.dot(vec1, vec2)
 
-                 # calculate norm
 
-                 norm_vec1 = np.linalg.norm(vec1)
 
-                 norm_vec2 = np.linalg.norm(vec2)
 
-                 # calculate cosine similarity
 
-                 cosine_sim = dot_product / (norm_vec1 * norm_vec2)
 
-                 query_vector_scores.append(cosine_sim)
 
-         return query_vector_scores
 
 
  |