| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585 | import flask_restfulfrom flask import current_app, requestfrom flask_login import current_userfrom flask_restful import Resource, marshal, marshal_with, reqparsefrom werkzeug.exceptions import Forbidden, NotFoundimport servicesfrom controllers.console import apifrom controllers.console.apikey import api_key_fields, api_key_listfrom controllers.console.app.error import ProviderNotInitializeErrorfrom controllers.console.datasets.error import DatasetInUseError, DatasetNameDuplicateError, IndexingEstimateErrorfrom controllers.console.setup import setup_requiredfrom controllers.console.wraps import account_initialization_requiredfrom core.errors.error import LLMBadRequestError, ProviderTokenNotInitErrorfrom core.indexing_runner import IndexingRunnerfrom core.model_runtime.entities.model_entities import ModelTypefrom core.provider_manager import ProviderManagerfrom core.rag.datasource.vdb.vector_type import VectorTypefrom core.rag.extractor.entity.extract_setting import ExtractSettingfrom core.rag.retrieval.retrival_methods import RetrievalMethodfrom extensions.ext_database import dbfrom fields.app_fields import related_app_listfrom fields.dataset_fields import dataset_detail_fields, dataset_query_detail_fieldsfrom fields.document_fields import document_status_fieldsfrom libs.login import login_requiredfrom models.dataset import Dataset, Document, DocumentSegmentfrom models.model import ApiToken, UploadFilefrom services.dataset_service import DatasetService, DocumentServicedef _validate_name(name):    if not name or len(name) < 1 or len(name) > 40:        raise ValueError('Name must be between 1 to 40 characters.')    return namedef _validate_description_length(description):    if len(description) > 400:        raise ValueError('Description cannot exceed 400 characters.')    return descriptionclass DatasetListApi(Resource):    @setup_required    @login_required    @account_initialization_required    def get(self):        page = request.args.get('page', default=1, type=int)        limit = request.args.get('limit', default=20, type=int)        ids = request.args.getlist('ids')        provider = request.args.get('provider', default="vendor")        search = request.args.get('keyword', default=None, type=str)        tag_ids = request.args.getlist('tag_ids')        if ids:            datasets, total = DatasetService.get_datasets_by_ids(ids, current_user.current_tenant_id)        else:            datasets, total = DatasetService.get_datasets(page, limit, provider,                                                          current_user.current_tenant_id, current_user, search, tag_ids)        # check embedding setting        provider_manager = ProviderManager()        configurations = provider_manager.get_configurations(            tenant_id=current_user.current_tenant_id        )        embedding_models = configurations.get_models(            model_type=ModelType.TEXT_EMBEDDING,            only_active=True        )        model_names = []        for embedding_model in embedding_models:            model_names.append(f"{embedding_model.model}:{embedding_model.provider.provider}")        data = marshal(datasets, dataset_detail_fields)        for item in data:            if item['indexing_technique'] == 'high_quality':                item_model = f"{item['embedding_model']}:{item['embedding_model_provider']}"                if item_model in model_names:                    item['embedding_available'] = True                else:                    item['embedding_available'] = False            else:                item['embedding_available'] = True        response = {            'data': data,            'has_more': len(datasets) == limit,            'limit': limit,            'total': total,            'page': page        }        return response, 200    @setup_required    @login_required    @account_initialization_required    def post(self):        parser = reqparse.RequestParser()        parser.add_argument('name', nullable=False, required=True,                            help='type is required. Name must be between 1 to 40 characters.',                            type=_validate_name)        parser.add_argument('indexing_technique', type=str, location='json',                            choices=Dataset.INDEXING_TECHNIQUE_LIST,                            nullable=True,                            help='Invalid indexing technique.')        args = parser.parse_args()        # The role of the current user in the ta table must be admin, owner, or editor        if not current_user.is_editor:            raise Forbidden()        try:            dataset = DatasetService.create_empty_dataset(                tenant_id=current_user.current_tenant_id,                name=args['name'],                indexing_technique=args['indexing_technique'],                account=current_user            )        except services.errors.dataset.DatasetNameDuplicateError:            raise DatasetNameDuplicateError()        return marshal(dataset, dataset_detail_fields), 201class DatasetApi(Resource):    @setup_required    @login_required    @account_initialization_required    def get(self, dataset_id):        dataset_id_str = str(dataset_id)        dataset = DatasetService.get_dataset(dataset_id_str)        if dataset is None:            raise NotFound("Dataset not found.")        try:            DatasetService.check_dataset_permission(                dataset, current_user)        except services.errors.account.NoPermissionError as e:            raise Forbidden(str(e))        data = marshal(dataset, dataset_detail_fields)        # check embedding setting        provider_manager = ProviderManager()        configurations = provider_manager.get_configurations(            tenant_id=current_user.current_tenant_id        )        embedding_models = configurations.get_models(            model_type=ModelType.TEXT_EMBEDDING,            only_active=True        )        model_names = []        for embedding_model in embedding_models:            model_names.append(f"{embedding_model.model}:{embedding_model.provider.provider}")        if data['indexing_technique'] == 'high_quality':            item_model = f"{data['embedding_model']}:{data['embedding_model_provider']}"            if item_model in model_names:                data['embedding_available'] = True            else:                data['embedding_available'] = False        else:            data['embedding_available'] = True        return data, 200    @setup_required    @login_required    @account_initialization_required    def patch(self, dataset_id):        dataset_id_str = str(dataset_id)        dataset = DatasetService.get_dataset(dataset_id_str)        if dataset is None:            raise NotFound("Dataset not found.")        # check user's model setting        DatasetService.check_dataset_model_setting(dataset)        parser = reqparse.RequestParser()        parser.add_argument('name', nullable=False,                            help='type is required. Name must be between 1 to 40 characters.',                            type=_validate_name)        parser.add_argument('description',                            location='json', store_missing=False,                            type=_validate_description_length)        parser.add_argument('indexing_technique', type=str, location='json',                            choices=Dataset.INDEXING_TECHNIQUE_LIST,                            nullable=True,                            help='Invalid indexing technique.')        parser.add_argument('permission', type=str, location='json', choices=(            'only_me', 'all_team_members'), help='Invalid permission.')        parser.add_argument('embedding_model', type=str,                            location='json', help='Invalid embedding model.')        parser.add_argument('embedding_model_provider', type=str,                            location='json', help='Invalid embedding model provider.')        parser.add_argument('retrieval_model', type=dict, location='json', help='Invalid retrieval model.')        args = parser.parse_args()        # The role of the current user in the ta table must be admin, owner, or editor        if not current_user.is_editor:            raise Forbidden()        dataset = DatasetService.update_dataset(            dataset_id_str, args, current_user)        if dataset is None:            raise NotFound("Dataset not found.")        return marshal(dataset, dataset_detail_fields), 200    @setup_required    @login_required    @account_initialization_required    def delete(self, dataset_id):        dataset_id_str = str(dataset_id)        # The role of the current user in the ta table must be admin, owner, or editor        if not current_user.is_editor:            raise Forbidden()        try:            if DatasetService.delete_dataset(dataset_id_str, current_user):                return {'result': 'success'}, 204            else:                raise NotFound("Dataset not found.")        except services.errors.dataset.DatasetInUseError:            raise DatasetInUseError()class DatasetUseCheckApi(Resource):    @setup_required    @login_required    @account_initialization_required    def get(self, dataset_id):        dataset_id_str = str(dataset_id)        dataset_is_using = DatasetService.dataset_use_check(dataset_id_str)        return {'is_using': dataset_is_using}, 200class DatasetQueryApi(Resource):    @setup_required    @login_required    @account_initialization_required    def get(self, dataset_id):        dataset_id_str = str(dataset_id)        dataset = DatasetService.get_dataset(dataset_id_str)        if dataset is None:            raise NotFound("Dataset not found.")        try:            DatasetService.check_dataset_permission(dataset, current_user)        except services.errors.account.NoPermissionError as e:            raise Forbidden(str(e))        page = request.args.get('page', default=1, type=int)        limit = request.args.get('limit', default=20, type=int)        dataset_queries, total = DatasetService.get_dataset_queries(            dataset_id=dataset.id,            page=page,            per_page=limit        )        response = {            'data': marshal(dataset_queries, dataset_query_detail_fields),            'has_more': len(dataset_queries) == limit,            'limit': limit,            'total': total,            'page': page        }        return response, 200class DatasetIndexingEstimateApi(Resource):    @setup_required    @login_required    @account_initialization_required    def post(self):        parser = reqparse.RequestParser()        parser.add_argument('info_list', type=dict, required=True, nullable=True, location='json')        parser.add_argument('process_rule', type=dict, required=True, nullable=True, location='json')        parser.add_argument('indexing_technique', type=str, required=True,                            choices=Dataset.INDEXING_TECHNIQUE_LIST,                            nullable=True, location='json')        parser.add_argument('doc_form', type=str, default='text_model', required=False, nullable=False, location='json')        parser.add_argument('dataset_id', type=str, required=False, nullable=False, location='json')        parser.add_argument('doc_language', type=str, default='English', required=False, nullable=False,                            location='json')        args = parser.parse_args()        # validate args        DocumentService.estimate_args_validate(args)        extract_settings = []        if args['info_list']['data_source_type'] == 'upload_file':            file_ids = args['info_list']['file_info_list']['file_ids']            file_details = db.session.query(UploadFile).filter(                UploadFile.tenant_id == current_user.current_tenant_id,                UploadFile.id.in_(file_ids)            ).all()            if file_details is None:                raise NotFound("File not found.")            if file_details:                for file_detail in file_details:                    extract_setting = ExtractSetting(                        datasource_type="upload_file",                        upload_file=file_detail,                        document_model=args['doc_form']                    )                    extract_settings.append(extract_setting)        elif args['info_list']['data_source_type'] == 'notion_import':            notion_info_list = args['info_list']['notion_info_list']            for notion_info in notion_info_list:                workspace_id = notion_info['workspace_id']                for page in notion_info['pages']:                    extract_setting = ExtractSetting(                        datasource_type="notion_import",                        notion_info={                            "notion_workspace_id": workspace_id,                            "notion_obj_id": page['page_id'],                            "notion_page_type": page['type'],                            "tenant_id": current_user.current_tenant_id                        },                        document_model=args['doc_form']                    )                    extract_settings.append(extract_setting)        elif args['info_list']['data_source_type'] == 'website_crawl':            website_info_list = args['info_list']['website_info_list']            for url in website_info_list['urls']:                extract_setting = ExtractSetting(                    datasource_type="website_crawl",                    website_info={                        "provider": website_info_list['provider'],                        "job_id": website_info_list['job_id'],                        "url": url,                        "tenant_id": current_user.current_tenant_id,                        "mode": 'crawl',                        "only_main_content": website_info_list['only_main_content']                    },                    document_model=args['doc_form']                )                extract_settings.append(extract_setting)        else:            raise ValueError('Data source type not support')        indexing_runner = IndexingRunner()        try:            response = indexing_runner.indexing_estimate(current_user.current_tenant_id, extract_settings,                                                         args['process_rule'], args['doc_form'],                                                         args['doc_language'], args['dataset_id'],                                                         args['indexing_technique'])        except LLMBadRequestError:            raise ProviderNotInitializeError(                "No Embedding Model available. Please configure a valid provider "                "in the Settings -> Model Provider.")        except ProviderTokenNotInitError as ex:            raise ProviderNotInitializeError(ex.description)        except Exception as e:            raise IndexingEstimateError(str(e))        return response, 200class DatasetRelatedAppListApi(Resource):    @setup_required    @login_required    @account_initialization_required    @marshal_with(related_app_list)    def get(self, dataset_id):        dataset_id_str = str(dataset_id)        dataset = DatasetService.get_dataset(dataset_id_str)        if dataset is None:            raise NotFound("Dataset not found.")        try:            DatasetService.check_dataset_permission(dataset, current_user)        except services.errors.account.NoPermissionError as e:            raise Forbidden(str(e))        app_dataset_joins = DatasetService.get_related_apps(dataset.id)        related_apps = []        for app_dataset_join in app_dataset_joins:            app_model = app_dataset_join.app            if app_model:                related_apps.append(app_model)        return {            'data': related_apps,            'total': len(related_apps)        }, 200class DatasetIndexingStatusApi(Resource):    @setup_required    @login_required    @account_initialization_required    def get(self, dataset_id):        dataset_id = str(dataset_id)        documents = db.session.query(Document).filter(            Document.dataset_id == dataset_id,            Document.tenant_id == current_user.current_tenant_id        ).all()        documents_status = []        for document in documents:            completed_segments = DocumentSegment.query.filter(DocumentSegment.completed_at.isnot(None),                                                              DocumentSegment.document_id == str(document.id),                                                              DocumentSegment.status != 're_segment').count()            total_segments = DocumentSegment.query.filter(DocumentSegment.document_id == str(document.id),                                                          DocumentSegment.status != 're_segment').count()            document.completed_segments = completed_segments            document.total_segments = total_segments            documents_status.append(marshal(document, document_status_fields))        data = {            'data': documents_status        }        return dataclass DatasetApiKeyApi(Resource):    max_keys = 10    token_prefix = 'dataset-'    resource_type = 'dataset'    @setup_required    @login_required    @account_initialization_required    @marshal_with(api_key_list)    def get(self):        keys = db.session.query(ApiToken). \            filter(ApiToken.type == self.resource_type, ApiToken.tenant_id == current_user.current_tenant_id). \            all()        return {"items": keys}    @setup_required    @login_required    @account_initialization_required    @marshal_with(api_key_fields)    def post(self):        # The role of the current user in the ta table must be admin or owner        if not current_user.is_admin_or_owner:            raise Forbidden()        current_key_count = db.session.query(ApiToken). \            filter(ApiToken.type == self.resource_type, ApiToken.tenant_id == current_user.current_tenant_id). \            count()        if current_key_count >= self.max_keys:            flask_restful.abort(                400,                message=f"Cannot create more than {self.max_keys} API keys for this resource type.",                code='max_keys_exceeded'            )        key = ApiToken.generate_api_key(self.token_prefix, 24)        api_token = ApiToken()        api_token.tenant_id = current_user.current_tenant_id        api_token.token = key        api_token.type = self.resource_type        db.session.add(api_token)        db.session.commit()        return api_token, 200class DatasetApiDeleteApi(Resource):    resource_type = 'dataset'    @setup_required    @login_required    @account_initialization_required    def delete(self, api_key_id):        api_key_id = str(api_key_id)        # The role of the current user in the ta table must be admin or owner        if not current_user.is_admin_or_owner:            raise Forbidden()        key = db.session.query(ApiToken). \            filter(ApiToken.tenant_id == current_user.current_tenant_id, ApiToken.type == self.resource_type,                   ApiToken.id == api_key_id). \            first()        if key is None:            flask_restful.abort(404, message='API key not found')        db.session.query(ApiToken).filter(ApiToken.id == api_key_id).delete()        db.session.commit()        return {'result': 'success'}, 204class DatasetApiBaseUrlApi(Resource):    @setup_required    @login_required    @account_initialization_required    def get(self):        return {            'api_base_url': (current_app.config['SERVICE_API_URL'] if current_app.config['SERVICE_API_URL']                             else request.host_url.rstrip('/')) + '/v1'        }class DatasetRetrievalSettingApi(Resource):    @setup_required    @login_required    @account_initialization_required    def get(self):        vector_type = current_app.config['VECTOR_STORE']        match vector_type:            case VectorType.MILVUS | VectorType.RELYT | VectorType.PGVECTOR | VectorType.TIDB_VECTOR | VectorType.CHROMA | VectorType.TENCENT | VectorType.ORACLE:                return {                    'retrieval_method': [                        RetrievalMethod.SEMANTIC_SEARCH                    ]                }            case VectorType.QDRANT | VectorType.WEAVIATE | VectorType.OPENSEARCH:                return {                    'retrieval_method': [                        RetrievalMethod.SEMANTIC_SEARCH,                        RetrievalMethod.FULL_TEXT_SEARCH,                        RetrievalMethod.HYBRID_SEARCH,                    ]                }            case _:                raise ValueError(f"Unsupported vector db type {vector_type}.")class DatasetRetrievalSettingMockApi(Resource):    @setup_required    @login_required    @account_initialization_required    def get(self, vector_type):        match vector_type:            case VectorType.MILVUS | VectorType.RELYT | VectorType.PGVECTOR | VectorType.TIDB_VECTOR | VectorType.CHROMA | VectorType.TENCENT | VectorType.ORACLE:                return {                    'retrieval_method': [                        RetrievalMethod.SEMANTIC_SEARCH                    ]                }            case VectorType.QDRANT | VectorType.WEAVIATE | VectorType.OPENSEARCH:                return {                    'retrieval_method': [                        RetrievalMethod.SEMANTIC_SEARCH,                        RetrievalMethod.FULL_TEXT_SEARCH,                        RetrievalMethod.HYBRID_SEARCH,                    ]                }            case _:                raise ValueError(f"Unsupported vector db type {vector_type}.")class DatasetErrorDocs(Resource):    @setup_required    @login_required    @account_initialization_required    def get(self, dataset_id):        dataset_id_str = str(dataset_id)        dataset = DatasetService.get_dataset(dataset_id_str)        if dataset is None:            raise NotFound("Dataset not found.")        results = DocumentService.get_error_documents_by_dataset_id(dataset_id_str)        return {            'data': [marshal(item, document_status_fields) for item in results],            'total': len(results)        }, 200api.add_resource(DatasetListApi, '/datasets')api.add_resource(DatasetApi, '/datasets/<uuid:dataset_id>')api.add_resource(DatasetUseCheckApi, '/datasets/<uuid:dataset_id>/use-check')api.add_resource(DatasetQueryApi, '/datasets/<uuid:dataset_id>/queries')api.add_resource(DatasetErrorDocs, '/datasets/<uuid:dataset_id>/error-docs')api.add_resource(DatasetIndexingEstimateApi, '/datasets/indexing-estimate')api.add_resource(DatasetRelatedAppListApi, '/datasets/<uuid:dataset_id>/related-apps')api.add_resource(DatasetIndexingStatusApi, '/datasets/<uuid:dataset_id>/indexing-status')api.add_resource(DatasetApiKeyApi, '/datasets/api-keys')api.add_resource(DatasetApiDeleteApi, '/datasets/api-keys/<uuid:api_key_id>')api.add_resource(DatasetApiBaseUrlApi, '/datasets/api-base-info')api.add_resource(DatasetRetrievalSettingApi, '/datasets/retrieval-setting')api.add_resource(DatasetRetrievalSettingMockApi, '/datasets/retrieval-setting/<string:vector_type>')
 |